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This paper is concerned with certifying that a given point is 
near an exact root of an overdetermined or singular polynomial 
system with rational coefficients. The difficulty lies in the fact 
that consistency of overdetermined systems is not a continuous 
property. Our certification is based on hybrid symbolic-numeric 
methods to compute an exact rational univariate representation
(RUR) of a component of the input system from approximate 
roots. For overdetermined polynomial systems with simple roots, 
we compute an initial RUR from approximate roots. The accuracy 
of the RUR is increased via Newton iterations until the exact 
RUR is found, which we certify using exact arithmetic. Since 
the RUR is well-constrained, we can use it to certify the given 
approximate roots using α-theory. To certify isolated singular roots, 
we use a determinantal form of the isosingular deflation, which 
adds new polynomials to the original system without introducing 
new variables. The resulting polynomial system is overdetermined, 
but the roots are now simple, thereby reducing the problem 
to the overdetermined case. We prove that our algorithms have 
complexity that are polynomial in the input plus the output size 
upon successful convergence, and we use worst case upper bounds 
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for termination when our iteration does not converge to an exact 
RUR. Examples are included to demonstrate the approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In their recent article Hauenstein and Sottile (2012), F. Sottile and the second author showed that 
one can get an efficient and practical root certification algorithm using α-theory (cf. Smale, 1986;
Blum et al., 1998) for well-constrained polynomials systems. The same paper also considers overde-
termined systems over the rationals and shows how to use α-theory to certify that a given point is 
not an approximation of any exact roots of the system. On the other hand, to certify that a point is 
near an exact root, one can use universal lower bounds for the minimum of positive polynomials on 
a disk. That paper concludes that all known bounds were “too small to be practical.”

A closer look at the literature on lower bounds for the minimum of positive polynomials over 
the roots of zero-dimensional rational polynomial systems reveals that they all reduce the problem 
to the univariate case and use univariate root separation bounds (see, for example, Canny, 1990;
Jeronimo and Perrucci, 2010; Brownawell and Yap, 2009; Jeronimo et al., 2013). This led to the idea 
of directly using an exact univariate representation for the certification of the input system instead of 
using universal lower bounds that are often very pessimistic. For example, the overdetermined system

f1 := x1 − 1

2
, f2 := x2 − x2

1, . . . , fn := xn − x2
n−1, fn+1 := xn

has no common roots, but the value of fn+1 on the common root of f1, . . . , fn is double exponentially 
small in n. While universal lower bounds cover these artificial cases, our approach, as we shall see, 
has the ability to terminate early in cases when the witness for our input instance is small.

In principle, one can compute such a univariate representation using purely algebraic techniques, 
for example, by solving large linear systems corresponding to resultant or subresultant matrices (see, 
for example, Szanto, 2008). However, this purely symbolic method would again lead to worst case 
complexity bounds. Instead, we propose a hybrid symbolic-numeric approach, using the approximate 
roots of the system, as well as exact univariate polynomial arithmetic over Q. We expect that our 
method will make the certification of roots of overdetermined systems practical for cases when the 
universal lower bounds are too pessimistic, or when the actual size of our univariate representation 
is significantly smaller than in the worst case.

Consider an overdetermined system f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn] for some m > n, and assume 
that the ideal I := 〈 f1, . . . , fm〉 is radical and zero dimensional. Under these assumptions, the so-
called Rational Univariate Representation (RUR) for V (I) exists (cf. Rouillier, 1999), as well as for 
any component of V (I) over the rationals. Since the polynomials in the RUR have also rational co-
efficients, we can hope to compute them exactly, unlike the possibly irrational coordinates of the 
common roots of V (I). With the exact RUR, which is a well-constrained system of polynomials, we 
can use α-theory as in Hauenstein and Sottile (2012) to certify that a given point is an approximate 
root for the RUR, and thus for our original system f. Our symbolic-numeric method to compute a RUR 
for V (I) or for a rational component of V (I) consists of the following steps:

Initialization
(i) Compute approximations of all isolated roots to a given accuracy of a random well-constrained 

(square) set of linear combinations of the polynomials f1, . . . , fm using homotopy continuation 
(e.g., see Bates et al., 2013c; Sommese and Wampler, 2005);

(ii) Among the approximate roots computed in Step (i), choose the candidates which could be ap-
proximations to roots in V (I) or a rational component of V (I) – for this step, we can only give 
heuristics on how to proceed;

(iii) Chose a separating linear form (primitive element) for the approximate roots chosen in Step (ii);
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