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Given two coprime polynomials P and Q in Z[x, y] of degree at 
most d and coefficients of bitsize at most τ , we address the prob-
lem of computing a triangular decomposition {(Ui(x), V i(x, y))}i∈I
of the system {P , Q }.
The state-of-the-art worst-case complexities for computing such 
triangular decompositions when the curves defined by the input 
polynomials do not have common vertical asymptotes are Õ (d4)

for the arithmetic complexity and Õ B (d6 + d5τ ) for the bit com-
plexity, where Õ refers to the complexity where polylogarithmic 
factors are omitted and O B refers to the bit complexity.
We show that the same worst-case complexities can be achieved 
even when the curves defined by the input polynomials may have 
common vertical asymptotes. We actually present refined complex-
ities, Õ (dxd3

y + d2
xd2

y) for the arithmetic complexity and Õ B (d3
xd3

y +
(d2

xd3
y +dxd4

y)τ ) for the bit complexity, where dx and dy bound the 
degrees of P and Q in x and y, respectively. We also prove that 
the total bitsize of the decomposition is in Õ((d2

xd3
y + dxd4

y)τ ).
© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Computing triangular decompositions of algebraic systems is a well-known problem. In the special 
case of bivariate systems, given two coprime polynomials P and Q in Z[x, y], the triangular decom-
position of the system {P , Q } is a set of regular triangular systems, each of the form {U (x), V (x, y)}
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with coefficients in Z, whose sets of solutions are disjoint and are exactly those of {P , Q }. Recall that 
a triangular system {U (x), V (x, y)} is said regular if U and the leading coefficient of V with respect 
to y are coprime.

For computing triangular decompositions of bivariate systems, a classical algorithm using subre-
sultant sequences was first introduced by González-Vega and El Kahoui in the context of computing 
the topology of curves (González-Vega and El Kahoui, 1996). This algorithm is based on a direct 
consequence of the specialization property of subresultants and of the gap structure theorem, which 
implies the following (see Theorem 3): given two polynomials P = ∑p

i=0 ai(x)yi and Q = ∑q
i=0 bi(x)yi

in Z[x, y] and α ∈ R such that the leading coefficients ap(α) and bq(α) do not both vanish, then the 
first (with respect to increasing i) nonzero subresultant Sresy,i(P , Q )(α, y) is of degree i and is equal 
to the gcd of P (α, y) and Q (α, y). Note that values α such that ap(α) and bq(α) both vanish are ex-
actly the x-coordinates of the common vertical asymptotes of the curves defined by P and Q , which 
we refer to as the common vertical asymptotes of the polynomials, for simplicity. Hence, when P and 
Q do not have common vertical asymptotes, the gap structure theorem induces a decomposition of 
the system {P , Q } into triangular subsystems {Ui(x), Sresy,i(P , Q )(x, y)} where the product of the Ui
is the (squarefree part of the) resultant of P and Q with respect to y.

If the input polynomials have degree at most d and coefficients of bitsize at most τ , the worst-
case bit complexity of this algorithm was initially analyzed in Õ B(d16 + d14τ 2) (González-Vega and 
El Kahoui, 1996). The complexity analysis was later improved to Õ B(d7 + d6τ ) (Diochnos et al., 2009, 
§4.2) and more recently to Õ B(d6 + d5τ ) by considering amortized bounds on the degrees and bit-
sizes of factors of the resultant (Bouzidi et al., 2016, Proposition 16). No better complexity is known 
for computing triangular decompositions, even in the expected Las Vegas or Monte Carlo settings and 
even in the absence of common vertical asymptotes.

In the general case when P and Q (may) admit common vertical asymptotes, the natural so-
lution for computing a (full) triangular decomposition is to first use González-Vega and El Kahoui 
algorithm to compute the triangular decomposition of the solutions of {P , Q } that do not lie on com-
mon vertical asymptotes (this can be done by removing from the resultant of P and Q the solutions 
corresponding to these asymptotes, i.e., gcd(ap, bq)). Then, the triangular decomposition algorithm is 
called recursively on P and Q reduced modulo gcd(ap, bq). The drawback of this approach is that 
the number of recursive calls may be linear in the minimum of the degrees in x and y of the input 
polynomials (it may happen that only one vertical asymptote is “handled” at each recursive call) and 
that the bitsize of the coefficients of the reduction of P and Q increases at each recursive call.

Li et al. (2011) proposed a simple variation on this natural algorithm where, instead of considering 
P and Q modulo gcd(ap, bq) at the first recursive call (and similarly for the other calls), they simply 
remove the leading terms ap yp and bq yq of P and Q .1 However, they did not provide a complexity 
analysis of their algorithm.

Here, we present and analyze a variation on this algorithm. First, we solve some issues in Li et al.’s 
algorithm in which, during the recursion, the reduced versions of P and Q may not define a zero-
dimensional system (and also that they may be both univariate). Second, we carefully arrange our 
computations in a way that is critical for the analysis of our complexity bounds. In particular, (i) we 
only compute the principal subresultant sequence (instead of the full polynomial sequence) in order 
to compute only the relevant subresultant polynomials and (ii) in the recursion, we only compute the 
decomposition above the roots that define asymptotes for all the preceding polynomials.

In our modified algorithm, the number of recursive calls may still be linear in d but we show that 
the complexity of the overall recursive algorithm is the same as the complexity of the non-recursive 
algorithm (with no vertical asymptotes), that is Õ (d4) for the arithmetic complexity and Õ B(d6 +d5τ )

for the bit complexity (see Lemma 9 and Proposition 10). More precisely, we prove an arithmetic 
complexity in Õ (dxd3

y + d2
xd2

y) and a bit complexity in Õ B(d3
xd3

y + (d2
xd3

y + dxd4
y)τ ) in the worst case 

where dx and dy bound the degrees of P and Q in x and y, respectively (see Proposition 10). We also 
prove that the total bitsize of the decomposition is in Õ ((d2

xd3
y + dxd4

y)τ ). This implies in particular 

1 In Li et al. (2011), this reduction, called “reductum”, is not actually defined but it is defined in other articles by these 
authors; see e.g. Boulier et al. (2010).
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