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The class of objects we consider are algebraic relations between the 
four kinds of classical Jacobi theta functions θ j(z|τ ), j = 1, . . . , 4, 
and their derivatives. We present an algorithm to prove such 
relations automatically where the function argument z is zero, 
but where the parameter τ in the upper half complex plane is 
arbitrary.
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1. Introduction

The overall objective of this paper is to provide tools for the computer-assisted treatment of iden-
tities among Jacobi theta functions. In the first step of development, this amounts to zero-recognition 
of Taylor coefficients of the respective series expansions of theta functions. To introduce the general 
idea and application domain of the method presented in this paper, consider the following lemma 
that has been used in numerous papers like Berndt et al. (1995), Hirschhorn et al. (1993) and Garvan
(2010) to prove relations between Jacobi theta series.
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Lemma 1.1. (Atkin and Swinnerton-Dyer, 1954) Given a non-zero meromorphic function f on C \ {0} and 
f (wx) ≡ cxn f (x)1 for some integer n and non-zero complex constants c and w with 0 < |w| < 1, then

# poles( f ) = # zeros( f ) + n

in |w| < |x| ≤ 1.

To do zero recognition of such f (x) = f (x, q), where q is a parameter, the lemma classically is ap-
plied as follows: one cleverly chooses sufficiently many zeros x1, . . . , xm in the domain |w| < |x| ≤ 1. 
According to the lemma the number m of such zeros needs to be greater than the number of poles 
of f minus n, in order to show that f is identically zero. By their clever choice of x1, . . . , xm , each 
f (xi, q) is a modular form when viewed as a function of q. And, zero-recognition of modular forms is 
algorithmical owing to methods using Sturm bounds or valence formula, e.g., Lemma 4.9 and Propo-
sition 5.13.

Our approach is different and streamlines the idea above by choosing only one evaluation point, 
namely xi = 1 for all i, and by verifying that f ( j)(1, q) = 0 for j ∈ {0, . . . , m − 1}. In this way we prove 
that there is a zero of multiplicity at least m, which again implies that f (x) ≡ 0.

For j ≥ 1, the Taylor coefficients are not in general modular forms anymore. A crucial point is that, 
nevertheless, the task of proving relations like f ( j)(1, q) = 0 can again be carried out algorithmically 
for a large class of problems specified below. The functions that are the building blocks of this class 
are the Jacobi theta functions θ j(z|τ ) ( j = 1, . . . , 4) and their derivatives evaluated at z = 0. The 
θ j(z|τ ) are defined as follows.

Definition 1.2. (DLMF, 2016) Let τ ∈H := {z ∈C : Im(z) > 0} and q = eπ iτ , then

θ1(z|τ ) = θ1(z,q) := 2
∞∑

n=0

(−1)nq(n+ 1
2 )2

sin((2n + 1)z),

θ2(z|τ ) = θ2(z,q) := 2
∞∑

n=0

q(n+ 1
2 )2

cos((2n + 1)z),

θ3(z|τ ) = θ3(z,q) := 1 + 2
∞∑

n=1

qn2
cos(2nz),

θ4(z|τ ) = θ4(z,q) := 1 + 2
∞∑

n=1

(−1)nqn2
cos(2nz).

To exemplify our method of using Lemma 1.1, we consider the following classical example.

Example 1.3. (DLMF, 2016) For q ∈C with 0 < |q| < 1, prove

θ3(0,q)2θ3(z,q)2 − θ4(0,q)2θ4(z,q)2 − θ2(0,q)2θ2(z,q)2 ≡ 0. (1)

Proof. Let f j(x) := θ j(z, q) with x(z) = e2iz . Then using the series expansions in Definition 1.2 one 
can verify directly that f 2

j (q
2x) = q−2x−2 f 2

j (x). Define

g(x) := θ3(0,q)2 f3(x)2 − θ4(0,q)2 f4(x)2 − θ2(0,q)2 f2(x)2.

Observing that g(q2x) = q−2x−2 g(x), to prove the identity, by Lemma 1.1 it is sufficient to show that 
g(x) has at least three more zeros than poles in |q2| < |x| ≤ 1. By Definition 1.2, g(x) has no pole 
in C. The Taylor expansion of g(x) around x = 1 is

1 We use the notation f1(z1, z2, . . . ) ≡ f2(z1, z2, . . . ) if we want to emphasize that the equality between the functions holds 
for all possible choices of the arguments z j .
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