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Let f and g be complex multivariate polynomials of the same 
degree. Extending Beauzamy’s results which hold in the univariate 
case, we bound the Euclidean distance of points belonging to 
the zero-loci of f and g in terms of the Bombieri norm of 
the difference g − f . We also discuss real perturbations of real 
polynomials.
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0. Introduction

In this work we address the problem of evaluating how much the zero-locus of a polynomial 
varies, if some perturbations on the polynomial coefficients are permitted. We start with a simple 
illustrative example where we explicitly show that, locally, it is possible to bound the Euclidean dis-
tance of points belonging to two different algebraic plane curves of equations f = 0 and g = 0 in 
terms of the difference between f and g measured using a suitable norm in the space of polynomi-
als.
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Fig. 1. The curve f = 0.

Fig. 2. The three curves f = 0 (black), g1 = 0 (red), and g2 = 0 (green). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Example 0.1 (Descartes Folium). In the affine plane A2
(x,y)(R) consider the cubic curve C of equation 

f (x, y) = 0, where f (x, y) = x3 + y3 − xy (see Fig. 1). Further, consider two other cubic curves C1 :
g1(x, y) = 0 and C2 : g2(x, y) = 0, where g1(x, y) = x3 + y3 − (1 +

√
6

100 )xy and g2(x, y) = x3 + y3 −
xy − 1

100 (see Fig. 2).
Note that the coefficients of the polynomials g1(x, y) and g2(x, y) “slightly” differ from the cor-

responding coefficients of the polynomial f (x, y), and this leads to consider the curves C1 and C2
as “small” perturbations of the curve C . In order to quantify the size of each perturbation, we need 
to have a measure of the difference between the “original” curve C and each “perturbed” curve C1
or C2. This is feasible, for instance, by computing the Bombieri norm (introduced in Definition 2.1) of 
the polynomials differences, that is, g1 − f or g2 − f . In this case, the norm is always equal to 0.01, 



Download English Version:

https://daneshyari.com/en/article/4945961

Download Persian Version:

https://daneshyari.com/article/4945961

Daneshyari.com

https://daneshyari.com/en/article/4945961
https://daneshyari.com/article/4945961
https://daneshyari.com

