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Multiple binomial sums form a large class of multi-indexed 
sequences, closed under partial summation, which contains most 
of the sequences obtained by multiple summation of products 
of binomial coefficients and also all the sequences with algebraic 
generating function. We study the representation of the generating 
functions of binomial sums by integrals of rational functions. The 
outcome is twofold. Firstly, we show that a univariate sequence 
is a multiple binomial sum if and only if its generating function 
is the diagonal of a rational function. Secondly, we propose 
algorithms that decide the equality of multiple binomial sums 
and that compute recurrence relations for them. In conjunction 
with geometric simplifications of the integral representations, 
this approach behaves well in practice. The process avoids the 
computation of certificates and the problem of the appearance of 
spurious singularities that afflicts discrete creative telescoping, both 
in theory and in practice.

© 2016 Elsevier Ltd. All rights reserved.

0. Introduction

The computation of definite sums in computer algebra is classically handled by the method of 
creative telescoping initiated in the 1990s by Zeilberger (Zeilberger, 1990, 1991a; Wilf and Zeilberger, 
1992). For example, it applies to sums like
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In order to compute a sum
∑

k u(n, k) of a bivariate sequence u, this method computes an identity of 
the form

ap(n)u(n + p,k) + · · · + a0(n)u(n,k) = v(n,k + 1) − v(n,k).

Provided that it is possible to sum both sides over k and that the sequence v vanishes at the end-
points of the domain of summation, the left-hand side—called a telescoper—gives a recurrence for the 
sum. The sequence v is then called the certificate of the identity.

In the case of multiple sums, this idea leads to searching for a telescoping identity of the form

ap(n)u(n + p,k1, . . . ,km) + · · · + a0(n)u(n,k1, . . . ,km) =(
v1(n,k1 + 1,k2, . . . ,km) − v1(n,k1, . . . ,km)

)+ · · ·
+ (

vm(n,k1, . . . ,km + 1) − vm(n,k1, . . . ,km)
)
. (2)

Again, under favorable circumstances the sums of the sequences on the right-hand side telescope, 
leaving a recurrence for the sum on the left-hand side.

This high-level presentation hides practical difficulties. It is important to check that the sequences 
on both sides of the identities above are defined over the whole range of summation (Abramov, 
2006; Abramov and Petkovšek, 2005). More often than not, singularities do appear. To the best of 
our knowledge, no algorithm based on creative telescoping manages to work around this difficulty; 
they all let the user handle it. As a consequence, computing the certificate is not merely a useful 
by-product of the algorithm, but indeed a necessary part of the computation. Unfortunately, the size 
of the certificate may be much larger than that of the final recurrence and thus costly in terms of 
computational complexity.

The computation of multiple integrals of rational functions has some similarities with the compu-
tation of discrete sums and the method of creative telescoping applies there too. It may also produce 
extra singularities in the certificate, but in the differential setting this is not an issue anymore: for 
the integrals we are interested in, the integration path can always be moved to get around any extra 
singularity. Moreover, we have showed (Bostan et al., 2013b; Lairez, 2016) that integration of multi-
variate rational functions over cycles can be achieved efficiently without computing the corresponding 
certificate and without introducing spurious singularities. In that case, the algorithm computes a lin-
ear differential equation for the parameterized integral. It turns out that numerous multiple sums 
can be cast into problems of rational integration by passing to generating functions. The algorithmic 
consequences of this observation form the object of the present work.

0.1. Content

In §1, we define a class of multivariate sequences, called (multiple) binomial sums, that contains the 
binomial coefficient sequence and that is closed under pointwise addition, pointwise multiplication, 
linear change of variables and partial summation. Not every sum that creative telescoping can handle 
is a binomial sum: for example, among the three sums in Eq. (1), the second one and the third one are 
binomial sums but the first one is not, since it contains the inverse of a binomial coefficient; more-
over, it cannot be rewritten as a binomial sum (see §1.2). Yet many sums coming from combinatorics 
and number theory are binomial sums. In §2, we explain how to compute integral representations of 
the generating function of a binomial sum in an automated way. The outcome is twofold. Firstly, in §3, 
we work further on these integral representations to show that the generating functions of univari-
ate binomial sums are exactly the diagonals of rational power series. This equivalence characterizes 
binomial sums in an intrinsic way which dismisses the arbitrariness of the definition. All the theory 
of diagonals transfers to univariate binomial sums and gives many interesting arithmetic properties. 
Secondly, in §4, we show how to use integral representations to actually compute with binomial sums 
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