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Filters were introduced by J.B. Wilson in 2013 to generalize work 
of Lazard with associated graded Lie rings. It holds promise in 
improving isomorphism tests, but the formulas introduced then 
were impractical for computation. Here, we provide an efficient 
algorithm for these formulas, and we demonstrate their usefulness 
on several examples of p-groups.

© 2016 Published by Elsevier Ltd.

1. Introduction

Isomorphism between two finite groups becomes easier when we use isomorphism invariant sub-
groups (i.e. characteristic subgroups) to constrain the number of possibilities. With this in mind, 
Fitting uncovered several characteristic subgroups to later be used to determine isomorphism between 
groups (Fitting, 1938), see the accompanying bibliography in Cannon and Holt (2003). However, in the 
case of p-groups, these characteristic subgroups are usually the whole group or the trivial group. As 
seen in Eick et al. (2002), the inclusion of just one new characteristic subgroup can greatly improve 
performance.

New sources for computable characteristic subgroups of p-groups were uncovered in Wilson (2013,
2015). In addition, it was shown that the inclusion of new characteristic subgroups induced more 
subgroups and gave formulas to automate this process of refining. However, the formulas required an 
exponential amount of computation. In this paper, we prove that we can do this in polynomial time 
and we provide an implementation for Magma. Indeed, even for groups of order 3100, we are able to 
refine a typical characteristic series by about ten-fold in just a few minutes; see Fig. 1 on page 9.
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A filter for a group G is a function φ : M → 2G from a commutative monoid M = 〈M, +, 0, �〉 into 
the normal subgroups of G satisfying the following: for all s, t ∈ M

[φs, φt] ≤ φs+t & s � t =⇒ φt ≤ φs.

Wilson proves (Wilson, 2013, Theorem 3.1) that each filter has an associated Lie ring:

L(φ) =
⊕

s∈M−{0}
φs/ 〈φs+t | t ∈ M − {0}〉 . (1)

The use of monoids M is essential as it allows for somewhat arbitrary refinements some of which are 
discussed in Section 4. We prove the following theorem.

Theorem 1. Suppose φ : Nd → 2G is a filter where � is the lexicographical order. If H 	 G and there exists 
s ∈N

d such that〈
φs+t | t ∈ N

d − {0}
〉
< H < φs,

then there exists a polynomial-time algorithm that refines φ to contain H in its image.

The result is smaller homogeneous components, faster automorphism computations, and an easier 
explanation of structure. Indeed, in Maglione (2015a), it was shown that even well-studied unipotent 
classical groups admit surprises such as characteristic filters whose factors are at most of order p2. 
Together with Eick et al. (2002), this then reduces automorphism questions to GL(2, p) instead of 
GL(d, p). This and further uses in Maglione (2015b), Wilson (2015) make it desirable to compute with 
filters efficiently.

In addition to providing a computational framework for filters in Section 3, we refine several fil-
ters for common examples of p-groups in Section 5. We look to large examples in the literature and 
we also consider a sample of 2,000 sections (i.e. quotients of subgroups) of the Sylow 3-subgroups 
of classical groups of Lie type. We find that the larger the group, the more new structure we find, 
and because of the repetitive nature, often one discovery leads to more discoveries. All of our com-
putations were run in Magma V.21-5 (Bosma et al., 1997) on a computer with Intel Xeon W3565 
microprocessors at 3.20 GHz.

2. Preliminaries

We denote the set of nonnegative integers by N, and the set of all subsets of a set G by 2G . For 
groups and rings, we follow notation found in Gorenstein (1980). For g, h ∈ G , we set

[g,h] = g−1 gh = g−1h−1 gh;
for X, Y ⊆ G , we set

[X, Y ] = 〈[x, y] : x ∈ X, y ∈ Y 〉.
We let Zp denote the group Z/pZ.

For a p-group G , we consider two recursively defined series: the lower central series and the 
exponent-p central series. The lower central series starts with γ1(G) = G and γi+1(G) = [γi(G), G], 
and the exponent-p central series begins with η1(G) = G and ηi+1(G) = [ηi(G), G]ηi(G)p . The class 
(p-class) of G is the number of nontrivial terms in the lower central series (exponent-p central series).

2.1. Complexity

An algorithm runs in polynomial time if the number of operations it uses is bounded by a polyno-
mial of the input length. At least one mark of efficiency is polynomial time, but we include run times 
from experiments as well.
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