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We show that univariate trinomials xn +axs +b ∈ Fq[x] can have at 
most δ

⌊
1
2 +

√
q−1

δ

⌋
distinct roots in Fq , where δ = gcd(n, s, q − 1). 

We also derive explicit trinomials having √
q roots in Fq when 

q is square and δ = 1, thus showing that our bound is tight for 
an infinite family of finite fields and trinomials. Furthermore, we 
present the results of a large-scale computation which suggest that 
an O (δ log q) upper bound may be possible for the special case 
where q is prime. Finally, we give a conjecture (along with some 
accompanying computational and theoretical support) that, if true, 
would imply such a bound.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For univariate polynomial equations defined over a field, it is desirable to obtain general upper 
bounds on the number of solutions given in simple terms of plainly available information, such as 
the coefficients, exponents, or number of terms. The ubiquitous example of this is the degree bound, 
but over non-algebraically closed fields, it is possible to considerably improve upon the degree bound 
for certain non-negligible families of polynomials. Over the real numbers, Descartes’ Rule of Signs 
implies that a t-nomial f must have less than 2t real roots. For sparse polynomials – those with a 
small number of nonzero terms – this can provide a remarkable improvement on the trivial upper 
estimate given by the degree of f .

In Canetti et al. (2000), the authors establish a finite field analogue of Descartes’ Rule: a sparsity-
dependent upper bound on the number of roots of a t-nomial over Fq . More recently, an improved 
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upper bound was derived in Kelley (2016). Here, we investigate possible further improvements to the 
bound for the special case of t = 3. This can be considered the smallest nontrivial choice of t , since 
the zero sets of univariate binomials are easily characterized – they are simply cosets of subgroups 
of F∗

q , possibly together with 0 ∈ Fq .

Theorem 1.1. (Kelley, 2016, Theorems 2.2 and 2.3) Let

f (x) = c1xa1 + c2xa2 + · · · + ct xat ∈ Fq[x]
with all ci nonzero and a1 > a2 > · · · > at = 0. If f vanishes on an entire coset of a subgroup H ⊆ F

∗
q , then

#H ∈ {k ∈N : for each ai, there is an a j with j �= i and ai ≡ a j (mod k)}.
Furthermore, let R( f ) denote the number of distinct roots of f in Fq, and suppose R( f ) > 0. If C denotes the 
maximal cardinality of a coset on which f vanishes, then

R( f ) ≤ 2(q − 1)1−1/(t−1)C1/(t−1).

For a trinomial f (x) = xn + axs + b ∈ Fq[x], with a and b nonzero, associate the parameter

δ = gcd(n, s,q − 1).

Suppose that R( f ) > 0. It follows from Theorem 1.1 that if f vanishes on a coset of size C , then 
n ≡ s ≡ 0 (mod C). Since C must divide #F∗

q , we have that C divides δ. On the other hand, if f

vanishes at α ∈ Fq , then α ∈ F
∗
q , and f vanishes on the entire coset {x ∈ F

∗
q : xδ = αδ} of order δ. So, 

in the trinomial case we have explicitly that C = δ, and the bound given above simplifies to

R( f ) ≤ 2
√

δ(q − 1).

As pointed out in Cheng et al. (2014), this bound for trinomials is also a consequence of an earlier 
result from Bi et al. (2013) which bounds the number of cosets Si ⊂ F

∗
q needed to express the zero 

set of a sparse polynomial as a union of the form 
⋃N

i=1 Si . Our first result refines this upper bound.

Theorem 1.2. The roots of a trinomial

f (x) = xn + axs + b ∈ Fq[x]
are the union of no more than 

⌊
1
2 +

√
q−1

δ

⌋
cosets of the subgroup H ⊆ F

∗
q of size δ.

Consequently, we now have R( f ) ≤ δ
⌊

1
2 +

√
q−1

δ

⌋
, improving the previous result by approximately 

a factor of 2 when δ 
 q. The method of proof is elementary but interesting: given a trinomial with 
δ = 1 and r roots in a field of undetermined size, we construct r2 − r + 1 distinct nonzero elements 
in the field, giving a lower bound on its size.

Additionally, we show that when δ = 1, this new bound is optimal for even-degree extensions 
of Fp . If q is an even power of a prime p and δ = 1, the bound reduces to R( f ) ≤ √

q, and we can 
indeed construct trinomials with δ = 1 and 

√
q distinct roots in Fq .

Theorem 1.3. For any odd prime p, the trinomial xpk + x − 2 has exactly pk roots in Fp2k .

We prove Theorem 1.3 via linear-algebraic techniques: the extremal examples provided are trans-
lations of linear maps with null-spaces of exactly half the dimension of Fq as a vector space over F√

q . 
The optimality of the bound is somewhat murkier when Fq is not an even-degree extension. Trinomi-
als with nearly as many roots have been found for some other cases; for example, when q is a cube,
Cheng et al. (2014) give the example f (x) = x1+q1/3 + x + 1 which has q1/3 + 1 roots.
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