
JID:YJSCO AID:1674 /FLA [m1G; v1.173; Prn:8/03/2016; 9:53] P.1 (1-13)

Journal of Symbolic Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

On the maximum computing time of 

the bisection method for real root isolation

George E. Collins

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 November 2014
Accepted 27 February 2016
Available online xxxx

Keywords:
Polynomial roots
Real roots
Root isolation
Computing time
Algorithm analysis
Dominance

The bisection method for polynomial real root isolation was 
introduced by Collins and Akritas in 1976. In 1981 Mignotte 
introduced the polynomials Aa,n(x) = xn − 2(ax − 1)2, a an integer, 
a ≥ 2 and n ≥ 3. First we prove that if a is odd then the computing 
time of the bisection method when applied to Aa,n dominates 
n5(log d)2 where d is the maximum norm of Aa,n . Then we prove 
that if A is any polynomial of degree n with maximum norm d
then the computing time of the bisection method, with a minor 
improvement regarding homothetic transformations, is dominated 
by n5(log d)2. It follows that the maximum computing time of the 
bisection method is codominant with n5(log d)2.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We adopt the terminology “bisection method” for the polynomial real root isolation method intro-
duced in Collins and Akritas (1976). In this paper we prove that when the method (using classical 
arithmetic for polynomial translations) is applied to the Mignotte polynomials (Mignotte, 1981), 
Aa,n(x) = xn − 2(ax − 1)2 with a an odd integer, a ≥ 3 and n ≥ 3, its computing time dominates 
n5(log d)2, where d is the max norm, 4a2, of Aa,n . (A quite similar result concerning the continued 
fractions method was recently proved in Collins (2016).)

In Section 2 we prove important theorems about the real and complex roots of Aa,n . In Section 3
we introduce notation to be used for polynomial transformations. In Section 4 we define a binary 
tree associated with the transformations performed on Aa,n , estimate its height, and show that it is 
isomorphic to a finite portion of the tree for computing the decimal expansion of 1/a. In Section 5
we analyze the transformed polynomials, obtaining formulas for their coefficients. In Sections 6 and 
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7 we analyze translation times at right and left nodes of the tree. In Section 8 we obtain the lower 
bound of n5(log d)2 for the maximum computing time of the bisection method.

In Section 9 we discuss previous work on upper dominance bounds for the maximum comput-
ing time of the bisection method in Johnson (1998), Krandick (1995) and Eigenwillig et al. (2006). 
In Section 10 we introduce an improvement of the bisection method and prove that its maximum 
computing is dominated by n5(log d)2.

2. The roots of Aa,n

We begin with some theorems about the real and complex roots of Aa,n .

Theorem 1. Aa,n has exactly three positive real roots, namely one in each of the intervals (0, 1/a), (1/a, 1)

and (1, ∞).

Proof. Aa.n(0) = −2 < 0, Aa,n(1/a) = 1/an > 0, Aa,n(1) = 1 − 2(a − 1)2 ≤ 1 − 2 < 0 and Aa,n(∞) > 0
so there is at least one root in each of the named intervals. But Aa,n has only three coefficient sign 
variations so by the Descartes rule each interval contains only one root. �

Let these three roots be called r1, r2 and r3, r1 < r2 < r3. Mignotte (1981) gave a sketchy and 
slightly incorrect proof that r1, r2 ∈ (1/a − h, 1/a + h) where h = a−n/2−1. In fact this is not true for 
a = 2 and n ≤ 7. Krandick (1995) gave a correct proof of the following theorem,

Theorem 2. Let h = a−n/2−1 . Then if a ≥ 3 or if a = 2 and n ≥ 7 then r1 ∈ (1/a − h, 1/a) and r2 ∈
(1/a, 1/a + h).

In the following we will not use the case a = 2.

Theorem 3. Let C be the circle of radius 1 centered at the origin. If a ≥ 2 then r1 and r2 are the only roots of 
Aa,n inside of C.

Proof. We use Rouche’s theorem, which can be found, for example, in Marden (1949). It states that 
if C is a simple closed Jordan curve and P(z) and Q (x) are analytic inside of C and continuous on 
C and if |P (z)| < |Q (z)| on C then P (z) + Q (z) has the same number of zeros inside of C as Q (z). 
We apply it with C the circle of radius 1 centered at the origin, P (z) = zn and Q (z) = −2(az − 1)2. 
Clearly |P (z)| = 1 everywhere on C and |Q (z)| = 2|az − 1|2 so it suffices to prove that |az − 1|2 ≥ 1
on C. At z = x + yi,

|az − 1|2 = |(ax − 1) + (ay)i|2 = (ax − 1)2 + (ay)2 = a2x2 − 2ax + 1 + a2 y2.

On C , y2 = 1 − x2. Substituting we obtain

a2x2 − 2ax + 1 + a2 y2 = −2ax + 1 + a2.

Then, since −1 ≤ x ≤ 1 on C and a ≥ 2,

−2ax + 1 + a2 ≥ −2a + 1 + a2 = (a − 1)2 ≥ 1. �
Theorem 4. Aa,n is irreducible and therefore has no rational roots.

Proof. The irreducibility of Aa,n is a consequence of Eisenstein’s irreducibility criterion using the 
prime number 2. �
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