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The infinitesimal symmetries of differential equations (DEs) or 
other geometric objects provide key insight into their analytical 
structure, including construction of solutions and of mappings 
between DEs. This article is a contribution to the algorithmic 
treatment of symmetries of DEs and their applications. Infinitesimal 
symmetries obey a determining system L of linear homogeneous 
partial differential equations, with the property that its solution 
vector fields form a Lie algebra L. We exhibit several algorithms 
that work directly with the determining system without solving 
it. A procedure is given that can decide if a system specifies a 
Lie algebra L, if L is abelian and if a system L′ specifies an ideal 
in L. Algorithms are described that compute determining systems 
for transporter, Lie product and Killing orthogonal subspace. 
This gives a systematic calculus for Lie determining systems, 
enabling computation of the determining systems for normalisers, 
centralisers, centre, derived algebra, solvable radical and key series 
(derived series, lower/upper central series). Our methods thereby 
give algorithmic access to new geometrical invariants of the 
symmetry action.
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1. Introduction

The symmetries of a geometric object (differential equation, exterior differential system, Rieman-
nian metric, . . . ) are one of its most fundamental features. They arise in various ways: to capture 
physical invariance properties (Bluman and Anco, 2002, §1), or as a reflection of basic mathemat-
ical properties such as linearity (Bluman et al., 2010, §2). In the study of differential equations 
(DEs) they give powerful methods for constructing solutions (Bluman and Anco, 2002; Olver, 1993;
Ovsiannikov, 1982), and form the basis of computer algebra solution techniques (Schwarz, 2008). In 
computer algebra applications, the DE or other object is given, and must be analysed for its sym-
metries. Typically this involves ‘infinitesimal’ methods: if the DE or other object is on a space with 
coordinates x = (x1, . . . , xn), one seeks a vector field ξ i(x) ∂

∂xi which leaves the object invariant. This 
gives rise to a linear homogeneous system of ‘defining’ or ‘determining’ differential equations for 
the symmetry vector field components ξ i(x). Examples are Lie point and contact symmetries of DEs 
(Bluman and Anco, 2002), ‘intrinsic’ or Cartan symmetries (Krasil’shchik and Vinogradov, 1999, §3.7), 
and Killing equations for infinitesimal isometries of a Riemannian space.

Many packages are available in computer algebra systems for finding determining systems 
(Carminati and Vu, 2000; Cheviakov, 2007; Rocha Filho and Figueiredo, 2011). These packages then 
rely on solving the system to obtain symmetry vector fields explicitly. However there is great 
appeal in devising methods that can infer properties of a Lie algebra directly from the deter-
mining system without solving it. There are several reasons for this. First, the determining sys-
tem is the immediately available, algorithmically constructible object, whereas the solutions of the 
determining system are available only via application of integration heuristics, which inevitably 
fail in some instances. Second, the determining system often has coefficients that live in a com-
putable field (rational numbers, rational functions), whereas the solutions may involve algebraic 
or transcendental extensions (ex , 

√
1 + x2 etc.) which make computer algebra manipulations clum-

sier and less reliable. Finally, the very notion of a ‘Lie pseudogroup’ of transformations is defined
in terms of satisfaction of a determining system (Pommaret, 1978; Singer and Sternberg, 1965;
Stormark, 2000); it is therefore mathematically natural to cultivate techniques which stay close to 
the definition and work with the system rather than its solutions. An added attraction is that finite 
and infinite Lie pseudogroups can be treated in a unified way.

Some previous work has exploited differential reduction and completion methods to obtain proper-
ties of a Lie algebra directly from the determining system. Schwarz (1992a) noted that the dimension 
of a symmetry group could be inferred directly from the system, using the classical local existence–
uniqueness (E–U) theorem of Riquier (1910). Subsequently, Reid et al. (1992) exhibited a method for 
finding the structure constants ck

i j of a Lie algebra with respect to a certain basis characterised by 
the determining system, without knowing the solutions. Lisle et al. (2014) extended this work to ex-
tract ck

i j in the case where the determining system has been integrated fully or partially. Reid et al.

(1992) suggested using their ck
i j as inputs to Lie algebraic algorithms such as are described in de Graaf

(2000). Application to symmetry of DE additionally requires knowledge of how the Lie group acts on 
space. For example, Draisma (2001) used knowledge of Reid’s ck

i j , plus geometric information (tran-
sitivity, isotropy algebra) available at the level of determining systems (Lisle and Reid, 1998) to give 
an algorithm that identifies the ‘symmetry type’ of an ODE of order k ≥ 2. An alternative approach 
to identifying the symmetry type of ODE is taken by Schwarz (2008), again working at the level of 
determining systems.

From the point of view of general Lie algebras, acting on general spaces, the above work is frag-
mentary, being restricted for example to action on 2-dim (x, y) space. Apart from the work of Reid et 
al. (1992) and Lisle et al. (2014) for finding structure constants ck

i j , there is no systematic calculus for 
dealing with determining systems of arbitrary Lie algebras of vector fields. Our purpose is to fill this 
gap.

This paper is one of a sequence where we develop a toolkit of algorithms for determining systems, 
with the goal of extracting algebraic information (isomorphism invariants) about the Lie algebra, and 
geometric information (diffeomorphism invariants) about the vector fields that constitute it. As well 
as decision procedures, for example testing whether such a system really defines a Lie algebra L, we 
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