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a b s t r a c t 

Shannon’s entropy and its variants have been applied to measure uncertainty in a variety of special bi- 

nary relations. However, few studies have been conducted on uncertainty of general binary relations. In 

this study, we present a unified form of uncertainty measures for general binary relations. We rede- 

fine the concepts of entropy, joint entropy, conditional entropy, and mutual information. These uncer- 

tainty measures are generalizations of corresponding measures of special relations. We study the rela- 

tionship between these measures and examine important properties. Finally, numerical experiments are 

performed to identify applications of the proposed uncertainty measures. Comparing with existing uncer- 

tainty measures, the proposed method not only addresses the uncertainty of heterogeneous data sets, but 

also exhibit better performance in attribute reduction. This study can provide a fundamental framework 

for uncertainty theories of special rough set models. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Rough set theory has become a popular approach for dealing 

with vague and uncertain information. One major advantage of 

the theory is that it uses only internal knowledge and does not 

rely on prior model assumptions. In recent years, this theory has 

received wider attention as a means of data analysis and has been 

extensively applied in the fields of reasoning with uncertainty, 

attribute reduction, rule extraction, and classification learning 

[2–10,13–17,28–34,41–52] . 

Relations on a universe of discourse are the theoretical basis 

of rough set theory. Different rough set models employ different 

types of relations such as equivalence relations, similarity relation, 

dominance relation, and so on. Two core concepts in rough set 

models are granularity and approximation. Rough set models use 

a type of relation to group objects into different granules, which 

are called elementary information granules, and approximately 

describe a decision. Such approximation is always vague because 

of the uncertainty caused by granularity of representation of the 

decision information. 

Information entropy, proposed by Shannon, has been an ef- 

fective and powerful mechanism for characterizing uncertainty 

information. The extension of entropy and its variants has been 

applied in the rough set field [4–12,18–27,35–39,44,52] . For ex- 
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ample, Duntch and Gediga introduced information entropy into 

rough sets and proposed three types of conditional entropies for 

predicting a decision attribute [9] . Beaubouuef et al. developed 

a method for measuring uncertainty of rough approximation and 

rough relation from data by introducing the concept of rough 

entropy [1] . Wierman presented the uncertainty measures of gran- 

ularity by defining rough set entropy [36] . Liang et al. proposed 

a new method for evaluating both uncertainty and fuzziness of 

knowledge from an information system [18,19] . Hu redefined joint 

and conditional entropy based on Yager’s entropy in a neighbor- 

hood approximation space to measure the uncertainty of rough 

approximation [12] . Slezak used information entropy to compute 

the uncertainty of equivalence relations and identify the relative 

reducts of a decision table [26] . Qian and Liang presented the 

concepts of combination entropy and combination granulation 

for evaluating uncertainty of a discrete variable in terms of the 

partition ability of knowledge [24] . Yao defined a granulation mea- 

sure from the viewpoint of granulation [39] . Dai et al. proposed 

a new type of conditional entropy based on tolerance relation for 

an incomplete decision system [6–8] . These studies all examine 

the entropy of special binary relations. However, they consider 

only the single structural information of data while ignoring the 

structural information of heterogeneous data sets. 

In fact, information systems based on general binary relations 

exist in many fields. For example, complex network systems, social 

evaluation surveys, and fragmentary ordered information systems 

are good examples of these types of information systems. Alterna- 
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tively, a data set may contain nominal, ordinal, and scale features. 

If nominal features induce equivalence relations, ordinal features 

induce ordered relations, and scale features induce similarity re- 

lations. We can then derive a complex heterogeneous information 

system, which can be considered to be based on general binary 

relations. This is because all existing theories about information 

entropy do not address mixed-type relations but consider only 

special types of binary relations. Furthermore, similarity, ordered, 

and other types of relations are only the special cases of general 

binary relations. Therefore, a study of uncertainty measures for 

general binary relations is crucial. It not only handles the uncer- 

tainty information of complex heterogeneous data sets, but can 

also unify the uncertainty theories of special rough set models 

into a theoretical framework. In this study, we address the issue 

of uncertainty measures for general binary relations and present a 

unified form of uncertainty measures: entropy and its variants for 

general binary relations. We redefine the concepts of entropy, joint 

entropy, conditional entropy, and mutual information. These un- 

certainty measures are generalizations of corresponding measures 

of special relations. We study the relationship between these mea- 

sures and identify important properties. Finally, we conduct some 

experiments to identify applications of the proposed uncertainty 

measures. 

The remainder of the paper is organized as follows. 

Section 2 introduces basic notions related to general binary 

relations and information systems. Section 3 introduces the con- 

cepts of entropy, joint entropy, conditional entropy, and mutual 

information for general binary relations and examines important 

properties. Section 4 discusses the potential applications for un- 

certainty measures of general binary relations. Section 5 concludes 

the study. 

2. Basic notions 

In this section, we review some basic notions related to general 

binary relations, information systems, and decision tables. For 

more detailed information, see the related content in Refs. [23,40] . 

Definition 2.1. Let U = { x 1 , x 2 , · · · , x n } be a universe of discourse 

and R be a binary relation on U . For any x ∈ U , if ( x, x ) ∈ R , then R is 

referred to as reflexive. For any x, y ∈ U , if ( x, y ) ∈ R implies ( y, x ) ∈ R , 

then R is referred to as symmetrical. For x, y, z ∈ U , if ( x, y ) ∈ R and 

( y, z ) ∈ R implies ( x, z ) ∈ R , then R is referred to as transitive. 

If ( x, y ) ∈ R for any x, y ∈ U , then R is referred to as a universal 

relation. If ( x, x ) ∈ R for any x ∈ U and ( x, y ) �∈ R for any two x, 

y ∈ U ( x � = y ), then R is referred to as an identity relation. If R is 

reflexive, symmetrical, and transitive, then R is referred to as an 

equivalence relation. 

Definition 2.2. Let R be a binary relation on U . For any x ∈ U , let 

R (x ) = { y ∈ U | (x, y ) ∈ R } . 
R ( x ) is then called the successor neighborhood of x . Obviously, 

R : U → P ( U ) is a neighborhood operator, where P ( U ) denotes the 

power set of U . 

A binary relation R and its neighborhood operator R : U → P ( U ) 

are uniquely determined by each other. If R and S are two binary 

relations on U , then the following properties hold: 

(1) R ⊆S ⇔∀ x ∈ U, R ( x ) ⊆S ( x ); 

(2) (R ∩ S)(x ) = R (x ) ∩ S(x ) ; 

(3) (R ∪ S)(x ) = R (x ) ∪ S(x ) . 

Let U be a nonempty set of samples { x 1 , x 2 , ���, x n } and A be a 

set of condition attributes for describing these samples in U , then 

the pair ( U, A ) is then called an information system. Given B ⊆A 

and R B as a general binary relation induced by B , in the following 

discussion, we always assume that R B = 

⋂ 

a ∈ B 
R a . 

Definition 2.3. Let ( U, A ) be an information system and B ⊆A . 

Then, B is called a reduct of A if and only if (1) R B = R A and (2) 

R B � = R B −{ a } for any a ∈ B . 

The first condition indicates that a reduct has the same dis- 

cernibility as the whole attribute set. The second condition shows 

that no redundant attribute is present in the reduct. 

Definition 2.4. The triple ( U, A, D ) is called a decision table, 

where A is a set of condition attributes that induce general binary 

relations and D is a decision attribute that induces an equivalence 

relation R D on U . 

Definition 2.5. Given a decision table ( U, A, D ), if R A ⊆R D , then we 

say ( U, A, D ) is consistent. Let B ⊆A , then B is called a relative reduct 

of A if and only if (1) R B ⊆R D and (2) R B −{ a } �⊂ R D for any a ∈ B . 

From this definition, a relative reduct of A is a minimal subset 

of attributes that retain the same consistent classification as the 

entire set of attributes. 

3. Information measures of general binary relations 

In this section, we first define an equivalence relation based 

on the successor neighborhoods of samples and use the relation 

to divide the sample space into different parts. We then present 

the concepts of entropy and its variants for binary relations and 

discuss some basic properties. 

Given a universe of discourse U , assume that R is a binary 

relation on U, R : U → P ( U ) is a neighborhood operator and X ⊆U . 

Let R (X ) = { R (x ) | x ∈ X } . We then call R ( X ) the neighborhood image 

of X . 

The concept of classical entropy is of course based on prob- 

ability distribution. To maintain the idea of classical entropy, 

we use an equivalence relation to group samples into different 

equivalence classes and employ them to define the entropy for 

general binary relations. We start by introducing the concept of 

equivalence relation as follows. 

Definition 3.1. Given a universe U and a general binary relation R 

on U . Let 

ER = { ( x i , x j ) ∈ U × U | R ( x i ) = R ( x j ) } . 
Obviously, ER is reflexive, symmetrical, and transitive. Hence, ER 

is an equivalence relation on U . The partition induced by ER is de- 

noted as U/ER = { X 1 , X 2 , · · · , X r } , where X k = { x j ∈ U| R ( x i ) = R ( x j ) } , 
x i ∈ X k , k = 1 , 2 , · · · , r. 

The equivalence relation ER divides the universe U into mutu- 

ally disjoint subsets { X 1 , X 2 , ���, X r }. Here, we derive the following 

property about general binary relations 

Proposition 3.1. Let R be a general binary relation on U, ER be the 

equivalence relation induced by R , and U/ER = { X 1 , X 2 , · · · , X r } . For 

any x i ∈ X k (1 ≤ k ≤ r ), we have (1) R ( X k ) = R ( x i ) and (2) X k ⊆R ( x i ) if 

R is reflexive. 

Proof. Straightforward. 

Example 1. Let U = { x 1 , x 2 , x 3 , x 4 , x 5 } and R be one general binary 

relation on U , where 
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