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a b s t r a c t 

This paper deals with a new filter algorithm for selecting the smallest subset of features carrying all the 

information content of a dataset (i.e. for removing redundant features). It is an advanced version of the 

fractal dimension reduction technique, and it relies on the recently introduced Morisita estimator of In- 

trinsic Dimension (ID). Here, the ID is used to quantify dependencies between subsets of features, which 

allows the effective processing of highly non-linear data. The proposed algorithm is successfully tested 

on simulated and real world case studies. Different levels of sample size and noise are examined along 

with the variability of the results. In addition, a comprehensive procedure based on random forests shows 

that the data dimensionality is significantly reduced by the algorithm without loss of relevant informa- 

tion. And finally, comparisons with benchmark feature selection techniques demonstrate the promising 

performance of this new filter. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recent breakthroughs in technology have radically improved 

our ability to collect and store data. Consequently, more and more 

variables (or features 1 ) are available to perform data mining tasks, 

but in general, a lot of them are redundant (i.e. they do not carry 

additional information beyond that subsumed by other features), 

or partially redundant, and contribute to the emergence of four 

major issues: (1) the reduction in the accuracy of learning algo- 

rithms because of the curse of dimensionality [1] , (2) the computer 

performance limitations related to memory and processing speed, 

(3) the difficulty in visualizing large amounts of complex and high- 

dimensional data and (4) the interpretability of the results which 

becomes less tractable making it difficult to gain an insight into 

the mechanisms that generated the data. 

Due mainly to these redundant and partially redundant fea- 

tures, data points do not occupy the full E -dimensional space R 

E 

( E is the number of features in a dataset) in which they are em- 

bedded. Instead, they are often regarded as residing on a lower 

M -dimensional manifold where M ( ≤ E ) is the Intrinsic Dimension 

(ID) of data [2] . Dimensionality Reduction (DR) methods [3,4] can 

help remove redundant information by trying to map the origi- 

nal data space coordinates to an intrinsic coordinate system of di- 
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mensionality M . Depending on the assumptions made about the 

shape of the manifold, the mapping can be either linear (e.g. 

PCA [5] ) or non-linear (e.g. kernel-PCA [6] ), and a great advan- 

tage of the DR approach is its potential to capture complex de- 

pendencies. On the other hand, DR often leads to a deteriora- 

tion in the physical interpretability of the data and to difficul- 

ties in the understanding of subsequent results. A possible solu- 

tion to these drawbacks is the implementation of feature selection 

methods. 

The goal of feature selection [7–11] is to select the smallest sub- 

set of original features which maintains some meaningful charac- 

teristics with respect to a chosen criterion. According to the pos- 

sible use of output information (e.g. class labels), feature selection 

methods can be broadly classified as either supervised or unsuper- 

vised. Advanced supervised methods aim to select features which 

are both relevant to the prediction (i.e. classification or regres- 

sion) of some output information and related as little as possible 

to one another (i.e. select relevant and non-redundant features). In 

contrast, unsupervised methods do not make use of any a priori 

knowledge regarding an output, and they can be further divided 

into two categories: Cluster Recognition (CR) and Redundancy Min- 

imization (RM). 

The CR methods aim to find the smallest subset of features that 

uncovers the most “interesting” and “natural” groupings (i.e. clus- 

ters) of data points [12–15] . They rely on criteria of relevance that 

do not involve any output information, and they can be catego- 

rized into filters and wrappers [16] . The former (e.g. the Laplacian 

score method [17] , SPEC [18,19] and MCFS [20] ) do not incorpo- 
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rate the clustering algorithm that will ultimately be applied, while 

the latter do (e.g. methods introduced in [12,21] or reviewed in 

[13] ). In contrast, the RM methods are often not restricted to clus- 

tering problems, and they can be used as preprocessing tools in 

a wide variety of data mining approaches. Their goal is to select 

the smallest subset of features in such a way that all the infor- 

mation content of a dataset is preserved as much as possible. In 

other words, they aim to eliminate all the redundant information 

by selecting the most informative features (i.e. the non-redundant 

features). To achieve this goal, the RM methods often use crite- 

ria based on PCA loading values [22] or on measures of feature 

dependency, such as the maximal information compression index 

[23] , mutual information [24,25] and fractal-based measures of ID 

[26–28] . More recently, Wang et al. [29] proposed a criterion that 

minimizes the reconstruction error of a linear projection of the 

original features, while ensuring low redundancy, and Zhu et al. 

[30] followed a similar objective by introducing the concept of self- 

representation for unsupervised feature selection. Further, the RM 

methods can be thought of as filters, and like many other meth- 

ods of feature selection, they can rely on greedy (e.g. Sequential 

Forward Selection (SFS) [31] and Sequential Backward Elimination 

(SBE) [32,33] ) or randomized (e.g. simulated annealing [34] ) search 

strategies if they consider multivariate interactions and aim to find 

the best subset among the 2 E − 1 combinations of features. Lastly, 

methods combining the CR and the RM approaches have also been 

developed. Many of them use a graph Laplacian matrix to preserve 

the data structure and involve a low redundancy constraint or a 

more advanced regularization term [35] . And the presence of noise 

and outliers motivated the work by Qian et al. [36] which proposed 

a framework to carry out both robust clustering and robust feature 

selection. 

More specifically, the use of ID for unsupervised feature se- 

lection was introduced by Traina et al. [26,37] . They extended the 

concept of ID to fractal dimensions and proposed the Fractal Di- 

mension Reduction (FDR) algorithm. FDR is a filter algorithm for 

non-linear RM that follows a SBE search strategy. It aims to elim- 

inate the features which do not contribute to increasing the value 

of the data ID (i.e. the ID of the studied dataset), and it re- 

lies on Rényi’s dimension of order 2 [38] , D 2 , for the ID esti- 

mation. An extension to FDR was proposed by De Sousa et al. 

[27] to identify subsets of correlated attributes in databases ac- 

cording to user-defined levels of correlation. Finally, Mo and Huang 

[28] modified FDR by replacing D 2 with the correlation dimension 

df cor [39] . 

The present paper deals with a novel ID-based filter algorithm 

for RM. It relies on the recently introduced Morisita estimator of 

ID, M m 

, which was shown to be more effective than D 2 and df cor 

in situations where the data points were sparsely distributed [40] . 

Besides, the proposed algorithm follows a SFS search strategy; it 

can process large and highly non-linear data, and its implementa- 

tion is straightforward in R and Matlab . Another advantage is that 

the number of features to be selected can be determined directly 

from the results. And it is also worth mentioning that M m 

was al- 

ready used successfully to perform supervised feature selection in 

regression problems [41] . 

The remainder of this paper is organized as follows. 

Section 2 presents the Morisita estimator of ID, and Section 3 ex- 

plains the relationship between ID and data redundancy. In 

Section 4 , the proposed algorithm for RM is introduced, and 

Section 5 is devoted to numerical experiments conducted on 

simulated data and on real world case studies. The quality of the 

results is assessed using a comprehensive methodology based on 

random forests [42] , and comparisons with benchmark feature 

selection techniques (including FDR) are also discussed. Finally, 

conclusions are drawn in the last section with a special emphasis 

on potentialities and future challenges. 

2. The Morisita estimator of intrinsic dimension 

2.1. Overview 

The Morisita estimator of ID [40] , M m 

, is derived from the mul- 

tipoint Morisita index I m, δ [44–46] . I m, δ is computed by means of 

an E -dimensional grid of Q cells (or quadrats) of diagonal size δ
superimposed over the data points (see Fig. 1 ). It measures how 

many times more likely it is that m ( m ≥ 2) points selected at ran- 

dom will be from the same cell than it would be if the N points 

of the studied dataset were distributed according to a random dis- 

tribution generated from a Poisson process (i.e. complete spatial 

randomness). I m, δ is given by the following formula: 

I m,δ = Q 

m −1 

∑ Q 
i =1 

n i (n i − 1)(n i − 2) · · · (n i − m + 1) 

N(N − 1)(N − 2) · · · (N − m + 1) 
(1) 

where n i is the number of data points in the i th cell. In general, 

m is set to 2, and the computation of the index is iterated for 

R different values of δ. These values must be chosen by the user 

and determine the scales at which the phenomenon will be char- 

acterized. Within the range of these scale values, if the dataset fol- 

lows a fractal behaviour (i.e. is self-similar), the functional relation- 

ship between log ( I m, δ) and log (1/ δ) is linear, its slope, S m 

, is the 

Morisita slope, and M m 

can be written as: 

M m 

= E −
(

S m 

m − 1 

)
. (2) 

In practice, each feature is rescaled to the [0, 1] interval (so is the 

grid), and δ is replaced with the edge length, � , of the cells. In this 

context, � −1 is simply the number of cells along each axis of the 

E -dimensional space where the data points are embedded. 

2.2. Detailed procedure 

In the remainder of this paper, the Morisita estimator of ID will 

be used only with m = 2 as advocated in [40] . The following steps 

summarize how to compute the ID of a dataset using M m =2 : 

1. Rescale each of the E features to the [0, 1] interval. 

2. Choose the values of the parameter � −1 so that the functional 

relationship of Step 6 can be well approximated by a linear re- 

gression model (see Section 2.3 ). 

3. Superimpose an E -dimensional grid over the data points. The 

size of the grid cells is controlled by the user through the pa- 

rameter � −1 which is simply the number of cells along each axis 

of the grid. 

4. Count the number of data points falling into the cells of the 

grid. This step must be repeated for each value of the parame- 

ter � −1 chosen by the user. 

5. Compute the multipoint Morisita index I m =2 ,� −1 for each value 

of the parameter � −1 using Eq. (1) . Notice that the values of 

I m =2 ,� −1 are equal to those of I m =2 ,δ, since δ and � −1 are two 

different ways of characterizing the size of the same cells. 

6. Carry out the linear regression of log (I m =2 ,� −1 ) on log (� −1 ) . 

Then S m =2 is simply the slope of the regression model. 

7. Compute M m =2 using Eq. (2) . 

The procedure is illustrated in Fig. 1 for E = 2 . On the right, the 

two features F 1 and F 2 have been rescaled to the [0, 1] interval 

and a 2-dimensional grid is superimposed over the data points. 

The number of cells along each of the two axes of the grid is equal 

to 4. This is the value of the parameter � −1 which allows the user 

to control the grid resolution. The calculation of I m =2 ,� −1 was iter- 

ated four times ( R = 4 ) for � −1 ∈ { 1 , 2 , 3 , 4 } , and the results were 

used to draw the log-log plot shown on the left of the figure. The 

dashed line represents the linear regression model of Step 6. Its 

slope is the Morisita slope S 2 . 
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