
Applied Soft Computing 47 (2016) 103–118

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A  memory-based  gravitational  search  algorithm  for  enhancing
minimum  variance  distortionless  response  beamforming

Soodabeh  Darzia,∗, Tiong  Sieh  Kiongb,  Mohammad  Tariqul  Islamc,
Hassan  Rezai  Soleymanpourd, Salehin  Kibriac

a Center for Space Science, Universiti Kebangsaan Malaysia, Malaysia
b Center of System and Machine Intelligence, College of Engineering, Universiti Tenaga Nasional, Malaysia
c Department of Electrical, Electronic & Systems Engineering, Universiti Kebangsaan Malaysia, Malaysia
d Department of Electrical Engineering, Semnan University, Semnan, Iran

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 27 May  2014
Received in revised form 26 May  2016
Accepted 30 May  2016
Available online 3 June 2016

Keywords:
Gravitational search algorithm
Minimum variance distortionless response
Adaptive beamforming
Particle Swarm Optimization
Heuristic algorithm
Artificial intelligence

a  b  s  t  r  a  c  t

This  paper  introduces  a memory-based  version  of  gravitational  search  algorithm  (MBGSA)  to improve
the  beamforming  performance  by  preventing  loss  of optimal  trajectory.  The  conventional  gravitational
search  algorithm  (GSA)  is  a memory-less  heuristic  optimization  algorithm  based  on  Newton’s  laws  of
gravitation.  Therefore,  the  positions  of agents  only  depend  on  the optimal  solutions  of  previous  iteration.
In GSA,  there  is  always  a chance  to  lose  optimal  trajectory  because  of  not  utilizing  the  best  solution  from
previous  iterations  of the optimization  process.  This  drawback  reduces  the  performance  of  GSA when
dealing  with complicated  optimization  problems.  However,  the  MBGSA  uses  the overall  best  solution  of
the agents  from  previous  iterations  in the  calculation  of  agents’  positions.  Consequently,  the  agents  try  to
improve  their  positions  by  always  searching  around  overall  best  solutions.  The  performance  of the MBGSA
is  evaluated  by  solving  fourteen  standard  benchmark  optimization  problems  and  the results  are  compared
with  GSA  and modified  GSA  (MGSA).  It is  also  applied  to adaptive  beamforming  problems  to improve  the
weight  vectors  computed  by Minimum  Variance  Distortionless  Response  (MVDR)  algorithm  as  a  real
world  optimization  problem.  The  proposed  algorithm  demonstrates  high  performance  of convergence
compared  to  GSA  and  Particle  Swarm  Optimization  (PSO).

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Since the concept of adaptive arrays technique comes into
usage in aerospace and military applications via the employ-
ment of electronically steered antennas, adaptive beamforming has
drawn significant attention in various applications. They include
active jammer rejection, long-range surveillance radar, multi-beam
antennas and direction finding for space communications and
many other areas because of its attractive features such as high
data transmission rate, strong multipath fading resolution and high
co-channel interference resistance [1].

One of the famous adaptive array beamforming techniques,
known as Minimum-Variance Distortionless Response (MVDR),
was created by Capon in 1969 [2]. The advantage of this technique
is it requires only the knowledge of the Direction of Arrival (DOA) to
maximize the Signal to Noise Ratio (SNR) [3] through enhancement
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of the directivity in one direction only [4]. According to the charac-
teristics of this technique, weights computed by MVDR are not able
to form the null towards the interference source satisfactorily. Solv-
ing this problem through conventional empirical approach is very
difficult, time consuming, and sometimes, in real-time applica-
tion, is unmanageable. Therefore, some approaches have proposed
the use of mathematical models to improve the robustness of
the MVDR beamforming. However, the tradeoff between MVDR
performance and computational complexity still exists [4–6]. Con-
sequently, many meta-heuristics and exploratory methods get best
results for these types of difficulties. Recently, the employment of
meta-heuristics algorithm has been growing instead of exhaustive
and exact procedures in applications. Approaches such as Artificial
Immune System (AIS) [6], Particle Swarm Optimization (PSO) [7,8],
Artificial Bee Colony (ABC) [9,10], Genetic Algorithms (GA) [11,12],
Ant Colony Optimization (ACO) [13–15], Tabu Search (TS) [9,16,17],
Differential Evolution (DE) [18] and Clonal Selection (CS) [19,20]
have been used to improve various aspects of antenna systems.

Recently, gravitational search algorithm (GSA) was presented
as a heuristic optimization algorithm inspired by Newtonian laws
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of gravitation. It was shown to outperform similar algorithms like
PSO and GA for common benchmark functions [21]. Since the incep-
tion of GSA, a large number of researchers have introduced various
modified and improved gravitational search algorithms based on
the idea of memory, social information of PSO and novel strate-
gies to define the agents’ search pattern along with other stochastic
strategies [22–27]. Adaptive velocity constraint in GSA [27] uses an
adaptive maximum velocity constraint, which aims to control the
global exploration ability of the original algorithm while increas-
ing its convergence rate. Establishing a limitation on maximum
velocity increases the stability of most algorithms and ensures con-
vergence. However, it is detrimental to the exploration ability of
an algorithm in the early phase. Thus adaptive velocity constraints
were introduced in literature to ensure stability while not sacrific-
ing early exploration.

To enhance particle memory ability in GSA, the tactic of storing
previous local and global optimum solution from PSO was intro-
duced to GSA in literature [22]. It is simply a combination of PSO
with the standard GSA, in which each particle can remember its
own local optimum solution (Pbest) and global optimum solution
(Gbest). During the velocity update calculation of GSA, the mem-
ory of local and global best is incorporated by adding a randomly
weighted vector towards each best location, just like PSO [22].
However, the presented method has some drawbacks that reduce
efficiency; for example, introducing some new adjustable parame-
ters to the algorithm, which complicate the algorithm further.

In this study, we propose a memory based version of GSA
(MBGSA) to deal with complicated optimization problems like the
MVDR. MBGSA is introduced and applied to maximize the Signal to
interference-noise ratio (SINR) in MVDR beamforming technique.
The proposed MBGSA utilizes the overall best solution of pop-
ulations in calculation of agent positions unlike the GSA, which
uses only the best solution of previous iteration. Thus, when a
swarm clusters together at local optimum, the overall personal best
(‘pbest’) values of the agents recorded from the earlier exploration
helps to determine the acceleration parameter, which subsequently
prevent the agents from locking inside the local optimum and
further enable the agents to follow the gradient of entire fitness
function. Thus, MBGSA is far less likely to stagnate in local optimum
in the search space and prevents the loss of optimal search trajec-
tory, hence improves the convergence performance of the proposed
algorithm. MBGSA has been applied in beamforming problem with
uniform linear antenna arrays at 0.5� spacing between adjacent
elements and radiating at a frequency of 2.3 GHz in this study.
Fig. 1 illustrates the framework utilized to develop the proposed
algorithm in this paper.

The rest of this paper is organized as follows: Section 2
introduces the brief evaluation of GSA. The proposed MBGSA is
presented in Section 3. Section 4 introduces the basics of adaptive
beamforming and the conventional MVDR. The benchmark func-
tions utilized to verify the performance of the proposed algorithm
are presented in Section 5. In Sections 6, results of optimizing the
benchmark functions with the proposed algorithm are compared
with results for GSA and its variants from literature. Simulation
results of different interferences and comparison of conventional
MVDR with MVDR-PSO, MVDR-GSA and MVDR-MBGSA are also
reported in this section. Finally, Section 7 concludes this investi-
gation.

2. Gravitational search algorithm (GSA)

Gravitational search algorithm (GSA) is one of the recent search
algorithms for heuristic population based on the mass interactions
and law of gravity [21]. This approach is employed as an artificial
world of masses following the gravitation and Newtonian laws of

motion. All the GSA agents are employed as objects that will be
evaluated through their masses. These objects collectively move
toward the objects with heavier masses iteratively using Eq. (1)
due to higher gravitational force. Eq. (2) is evaluated to calculate
the velocity of an object, and then it is used in Eq. (1). Thus, best
solutions of the problems are represented by the heavier masses.
The new position and velocity of i-th agent along dimension d will
be improved based on the following equations:

xi
d(t + 1) = xi

d(t) + vi
d(t + 1) (1)

vi
d(t + 1) = randi × vi

d(t) + ai
d(t) (2)

where vi
d is velocity of i-th agent in dimension d, randi employs a

random variable to offer a randomized characteristic for the search
space, xi

d(t) is position of i-th agent in dimension d, at iteration
number t. The acceleration of agent i in dimension d, ai

d, is calcu-
lated as below in Eq. (3):

ai
d(t) =

∑
j ∈ kbest,j /=  i

randjG(t)
Mj(t)

Ri,j(t) + ε

(
xj

d(t) − xi
d(t)

)
(3)

where the acceleration of i-th agent in dimension d is ai
d, kbest is a

function that is able to control the performance of GSA. The role of
this kbest is to control the exploitation and exploration of GSA tech-
nique. In order to avoid local optimum stagnation, the algorithm
must use the exploration at beginning. However, in later itera-
tions, exploration must fade out and exploitation must increase.
To improve the performance of GSA, by controlling exploration and
exploitation, only the certain number of agents will attract the other
particles and this number of agents is determined by kbest. kbest
is initialized as the number equal to the total number of agents
and linearly decreased to one at the end of the optimization pro-
cess. Thus, at the beginning, all agents apply the force and, at the
end, only one agent applies force to the others [21]. The Euclidean
distance between the ith and jth agent in Eq. (3), Ri,j(t), is evalu-
ated according to Eq. (4). The gravitational constant at time t is G(t)
according to Eq. (5); randj is random value; Mj is mass of j-th agent
that is presented in Eq. (6); ε is a small zero offset constant.

Ri,j(t) = ‖Xi(t), Xj(t)‖2 (4)

where Xi and Xj are the locations of agents i and j respectively
and the Ri,j(t) is the Euclidean distance between them. This study
employs R as a replacement of R2 in Eq. (3) due to the recommen-
dations offered in Ref. [21]. The G(t), in Eq. (3), is an time-varying
function that is set to G0 at the starting and will decline exponen-
tially to control the convergence rate of the algorithm as shown
below in Eq. (5):

G(t) = G0 × exp
(
−  ̌ × t⁄tmax

)
(5)

where t is the current iteration,  ̌ is a gradient constant value and
tmax is the maximum iteration number. Moreover, the normalized
mass of agents that is mentioned in Eq. (3) can be obtained by Eq.
(6). Eq. (7) is used to determine an objects Netwonian mass based
on the fitness of the object at the position xi(t) from Eq. (1), or fiti(t),
as mentioned initially.

Mi(t) = mi(t)
N∑

j=1

mj(t)

(6)

In which,

mi(t) =

⎧⎨
⎩

fiti(t) − worst(t)
best(t) − worst(t)

if best (t)  /= worst

1 otherwise

⎫⎬
⎭ (7)
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