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a  b  s  t  r  a  c  t

Neural  networks  are  used  in many  applications  such  as image  recognition,  classification,  control  and
system  identification.  However,  the  parameters  of  the  identified  system  are  embedded  within  the  neural
network  architecture  and  are  not  identified  explicitly.  In this  paper,  a mathematical  relationship  between
the network  weights  and  the  transfer  function  parameters  is derived.  Furthermore,  an  easy-to-follow
algorithm  that can  estimate  the  transfer  function  models  for multi-layer  feedforward  neural  networks  is
proposed.  These  estimated  models  provide  an  insight  into  the  system  dynamics,  where  information  such
as time  response,  frequency  response,  and pole/zero  locations  can  be calculated  and  analyzed.  In order  to
validate  the  suitability  and  accuracy  of the  proposed  algorithm,  four  different  simulation  examples  are
provided  and  analyzed  for three-layer  neural  network  models.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Artificial Neural Networks (ANN) are mathematical models that
are used to imitate the biological neurons in the brain. They are
used as black box models to identify unknown functions by map-
ping input–output data. Many books have been written on the use
of ANN in identification and control applications. Haykin [1], col-
lected and established solid foundations in the theory of ANN. Liu
[2] presented various ANN structures and discussed their appli-
cations in nonlinear identification and control systems (adaptive
and predictive). Norgaard et al. [3] described different approaches
to ANN-based identification and control of dynamic systems.
Zilouchin with Jamshidi [4] collected and edited several articles
that were concerned with the theory and applications of intelligent
controllers. Furthermore, Demuth et al. [5] described different ANN
control architectures (model predictive control, NARMA-L2 control,
and model reference control) that were used in the ANN Toolbox
guide for MATLAB.

Isermann and Munchhof [6] published a well-structured and
comprehensive book entitled Identification of Dynamic systems
where they described and compared many system identification
methods. In their description of neural networks, they made the
following statement “Their main disadvantage is the fact that for
most neural networks, the net parameters can hardly be interpreted
in a physical sense, making it difficult to understand the results of the
modeling process (Page 19)”. They reiterated the statement again
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“The main disadvantage is the fact that the resulting models cannot be
interpreted well as the structure of the neural nets in general does not
allow a physical interpretation (Page 534)”. This paper is concerned
with transforming the ANN model into transfer function model and
therefore providing an insight into the physical system behavior.

Neural networks have been used extensively in identifying
dynamic systems in different publications. Efe and Kaynak [7]
studied and compared different ANN structures used in the identifi-
cation of nonlinear systems. Liu et al. [8] used Volterra polynomial
basis function neural networks for on-line identification of non-
linear systems. Gabrijel and Dobnikar [9] used recurrent neural
networks for on-line identification and reconstruction. These
researchers showed the capability of neural networks to identify
systems.

Sahoo et al. [10] used different neural network model structures
(polynomial and trigonometric expansions) to identify nonlinear
autoregressive models. The functional expansions were used to
capture the delayed input–output data which were then multi-
plied by the network weights and used as inputs to a hyper-tangent
activation function. They proposed a robust H∞ filter learning
algorithm to update the network weights. They used simulated
nonlinear time-varying plants to show that their proposed algo-
rithm provides lower mean-square-error than forgetting factor
recursive least squares algorithm, especially when noise is added.
However, the converged ANN weights were not compared to the
simulated plants’ parameters.

Coban [11] proposed a recurrent neural network with added
context layer for dynamic system identification. The proposed net-
work architecture was constructed using a general feedforward
network, but with added ‘special’ hidden layer that interacts exclu-
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sively with the ‘original’ hidden layer. Dynamic backpropagation
was used to train the network and update its weights. The work was
validated using linear and nonlinear simulated plants and exper-
imental DC motor and showed that the results of the proposed
network provided better performance than the Elman recurrent
network. However, the converged network weights were not ana-
lyzed nor were they compared to the original plants’ parameters.

Deng [12] proposed a series-parallel hybrid structure with two
neural networks where one network was used to generate the
desired plants’ outputs that were used for training the second net-
work. Such hybrid structure can improve the mapping capability of
the networks and tested the proposed model on experimental 3D
crane system to demonstrate the validity of his work. However, the
relationship between the network weights and the crane’s transfer
function was not studied.

Darus and Al-Khafaji [13] used neural networks for non-
parametric identification of flexible plates. They conducted
laboratory experiments and validated their work by comparing
the model response with the measured data. They also performed
correlation tests with the multi-layer perceptron neural, adaptive
Elman networks, and adaptive neural fuzzy networks. However,
their interest was concerned with nonparametric identification
only.

Han et al. [14] investigated an automatic self-organizing neu-
ral network that adapted its architecture (number of neurons and
topology) during the training process in order to improve the
network performance. They provided the pseudo code of the adap-
tive connecting and pruning algorithm and feedforward computation
used. They performed simulations of nonlinear models to compare
their algorithm results with other adaptive networks and showed
that the proposed algorithm provided better performance in CPU
time, mean-square-error, and average-percentage error. However,
they did not elaborate on the relationship between the network
weights and the simulated plant’s parameters.

Xie et al. [15] developed an identification method using ANN
based on Bouc–Wen differential model to identify memory-type
nonlinear hysteretic systems. They conducted laboratory exper-
iments to identify the restoring force of wire cable vibration
isolation system. They were able to identify the parameters of the
Bouc–Wen model, but they did not relate these parameters to the
plant’s transfer function.

All the previously described publications succeeded in devel-
oping ANN architectures, learning algorithms, and mathematical
models for system identification applications. However, none
of these researchers provided a clear mathematical relationship
between the network weights and the identified systems in para-
metric format.

Another closely-related application that researchers worked on
was time-series forecasting. Khashei and Bijari [16] used neu-
ral network models for time-series forecasting while Zhang [17]
used a hybrid Auto-Regressive-Moving-Average and neural net-
work model for time-series forecasting. Again, these researchers
did not provide the mathematical relationship between the net-
work weights and the estimated functions.

From the vast amount of research published in the area of neural
network identification, only a few investigated the mathematical
relationship between the network weights and the parameters of
the identified systems. Fung et al. [18] derived equations for the
frequency response and general transfer functions of multi-layer
networks in terms of the network weights. They used series expan-
sions and Volterra kernel within the network models to establish
their equations. However, their work was general, very mathemat-
ically involved, and did not provide a clear path to follow. Chon
and Cohen [19] did impressive work in estimating the parameters
for linear and nonlinear Auto-Regressive Moving-Average (ARMA)
models using neural network weights. They provided simulation

results for several systems and compared the results between the
network identification and least square ARMA identification. How-
ever, their work was restricted to polynomial activation functions
and did not consider the frequency responses of their models. Lopez
and Caicedo [20] used multilayer perceptron for parametric iden-
tification. They showed explicit equations for the linear activation
cases, but they did not provide those equations for the nonlinear
activation functions. Instead, they re-structured the error criteria
and used Bayesian training to deal with the nonlinearities. In all of
the described work, none provided a clear and easy-to-follow algo-
rithm that shows how to relate the network weights to system’s
parameters.

Chen and Chen [21] discussed a neural-network-based system
identification technique to determine the z-transfer function of a
building envelope from experimental data. Neural networks were
used to determine the Markov parameters of the process and Eigen-
system realization algorithm was used to identify a minimal order
state space presentation. However, the neurons were assumed to
operate in the linear range only. Also, the work studied only the
hyperbolic activation function and the simulation results were
applied to the specific case of heat conduction through a wall.

Fei et al. [22] proposed a linear recurrent neural network and
identified transfer function matrix models for multi-variable sys-
tems. Simulation results were provided to show that the proposed
method can deliver the transfer function parameters from the neu-
ral network weights. However, the active functions of the hidden
and output layers were linear and therefore the proposed method
can only be applied in the identification of linear systems. They con-
cluded that investigation is required to establish whether similar
results can be found when nonlinear activation functions are used.

In previous work, Tutunji [23] presented a method to identify
transfer functions for linear models using neural network weights
with single layer only. This paper builds on those results and
expands the work to include multi-layer neural network and non-
linear models.

The main contribution of the paper is the establishment of a
clear relationship between the ANN weights and the transfer func-
tion parameters. Therefore, providing better interpretation (in a
physical sense) where important information, such as frequency
response and pole locations, can be explored. More importantly, a
clear and easy-to-follow algorithm is provided that can transform
the network results into ARMA models and therefore identify the
system’s transfer function.

In Section 2, theoretical background for system identification
and neural network architecture is provided. Section 3 provides the
mathematical derivations for the proposed method and describes
the algorithm used. The simulation results are given in Section 4
and the conclusion is provided in Section 5.

2. Theoretical background

This section provides the background theory that is essential
to the proposed algorithm and is divided into two  parts: system
identification and neural network architecture.

2.1. System identification

System identification is the process of using appropriate
mathematical models and learning algorithms in order to map
experimental data by minimizing an error criterion between the
system’s desired output and the model output.

Auto-Regressive Moving-Average (ARMA) models are linear
regression models that use difference (or differential) equations
to relate the model output to present inputs, past inputs and past
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