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than those compared to.

In this paper, we propose a novel hybrid global optimization method to solve constrained optimization
problems. An exact penalty function is first applied to approximate the original constrained optimization
problem by a sequence of optimization problems with bound constraints. To solve each of these box
constrained optimization problems, two hybrid methods are introduced, where two different strategies
are used to combine limited memory BFGS (L-BFGS) with Greedy Diffusion Search (GDS). The convergence
issue of the two hybrid methods is addressed. To evaluate the effectiveness of the proposed algorithm,
18 box constrained and 4 general constrained problems from the literature are tested. Numerical results
obtained show that our proposed hybrid algorithm is more effective in obtaining more accurate solutions

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many practical problems can be formulated as optimization
problems [1,2]. A general optimization problem can be stated as
follows:

min  f(x) (1)
s.t. hi(x)=0, i=1,...,1, (2)
gix)<0, j=1,...,m, 3)
XeX=KxeR":L<x<U}, (4)
where x € R", f, h;,i=1,...,I,and g, j=1, ..., m, are continuously
differentiable functions, L=[Lq, Ly, ..., Ly] and U=[Uq, Uy, ..., U]

are, respectively, the lower and upper bounds. Let this problem be
referred to as Problem (P). To proceed further, we suppose that this
problem has at least one feasible solution.

In many real world applications, Problem (P) is non-convex,
either due to the non-convexity of the objective function or the
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constraint functions. For such a case, Problem (P) may admit many
local minima. In practice, local minima are useless if their corre-
sponding objective function values are far away from the global
minimum [3]. Thus, it is important to develop methods for find-
ing a global minimum of Problem (P). In the past several decades,
there have been extensive efforts dedicated to global optimiza-
tion. In general, global optimization methods can be classified into
three main categories: deterministic methods, stochastic meth-
ods and hybrid methods. For the methods belonging to the first
category, they are developed based on deterministic search strate-
gies in which only deterministic information is involved for both
local and global searches. In particular, for each of these meth-
ods, it relies heavily on the construction of an auxiliary function to
escape from local minima, such as tunnelling function [4] and filled
function [5,6], where there are several parameters to be adjusted.
Tuning these parameters is computationally expensive. For the
methods belonging to the second category, probabilistic techniques
are utilized to escape from local minima, such as Genetic Algorithm
[7-9], Ant Colony Optimization [10,11], Simulated Annealing algo-
rithm [12], Artificial Bee Colony algorithm [13-15], Particle Swarm
Optimization [16,17], Collective neuro-dynamic optimization [ 18],
Artificial algae algorithm [19] and Differential search algorithm
[20,21]. However, these methods tend to obtain solution with low
accuracy and are computationally expensive due to lack of guidance
by gradient during the searching process [22]. Their performances
are poor in terms of convergence [23].
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The methods belonging to the third category are known as
hybrid methods, where some stochastic schemes are combined
together or population based search methods are combined with
deterministic methods so as to speed up convergence process. In
[24], Harmony Search (HS) and Artificial Bee Colony (ABC) algo-
rithm are combined together to solve a class of box-constrained
optimization problems in which ABC is incorporated to improve
the local convergence of HS. In [23], a hybrid optimization tech-
nique is proposed through combining a genetic algorithm with a
local search strategy based on the interior point method. In [25],
an improved genetic algorithm (IGA) and an improved particle
swarm optimization (IPSO) algorithm are combined and applied
to optimize the amplitude of the current excitation of the spherical
conformal array. In [26,3], Simulated Annealing method is used to
escape from local optima obtained by gradient-based deterministic
method. In [27], ABC algorithm is combined with a modified pat-
tern search method to improve success rate and solution accuracy
for box constrained optimization problems. In [28], Particle Swarm
Optimizer is combined with BFGS to solve box-constrained opti-
mization problems, where BFGS is for the local search. In [22], this
hybrid method is further developed to solve general constrained
optimization problems. In [29], evolutionary computation (EC)
algorithms are combined with a sequential quadratic programming
(SQP) algorithm to solve constrained global optimization prob-
lems. The hybrid methods mentioned above have better numerical
performances when compared with pure stochastic search meth-
ods. In these hybrid methods, the stochastic methods are mainly
utilized to help obtain a better initial condition for further local
minimizing which means that only exploration search is used.
Note that the original stochastic methods are designed not only
for exploration search, but also for exploitation search. For a hybrid
algorithm, if a gradient-based method is embedded for local search,
the exploration would be strengthened at the expense of weak-
ening exploitation. However, the performance of these algorithms
depends heavily on tuning parameters in the stochastic algorithms.
If the parameters are not tuned appropriately, the solution obtained
will still be trapped into local minimum. To overcome this draw-
back, Dynamically Dimensioned Search Algorithm is developed
in [30] where no parameters tuning is required. However, that
method is a single-solution based heuristic global search algorithm.
Stochastic based search methods are applicable only to uncon-
strained or box-constrained optimization methods, and hence are
not directly applicable to solve Problem (P) which is a constrained
optimization problem involving both equality and inequality con-
straints. In the literature, a constrained optimization problem is
often transformed into a box constrained optimization problem
by augmenting the constraint functions to the cost function using
the augmented Lagrangian penalty method [22]. However, the
penalty parameter is required to go to infinity for achieving fea-
sibility. In this paper, the exact penalty function method (EPM)
(see [31,32]) will be applied to convert the constrained optimiza-
tion problem (P) into a box constrained optimization problem.
A major advantage of this approach is that the penalty param-
eter needs only to be greater than or equal to some finite value
for achieving feasibility. Then, a new population-based stochastic
search method, called the Greedy Diffusion Search (GDS), is pro-
posed to solve the box constrained optimization problems where
two parameters are included. In our extensive experimental experi-
ences, both of the two parameters can be pre-set without affecting
performance and thus, no parameters tuning is required in GDS.
In addition, the convergence issue is addressed. However, this
method is strong in exploration but suffers from poor exploita-
tion. Thus, the limited memory BFGS is embedded into GDS in
two different strategies to improve its exploitation. An effective
new hybrid search method is thus obtained for solving Problem

(P).

The rest of this paper is organized as follows. In Section 2, an
exact penalty method is introduced to tackle the constraints. In
Section 3, two hybrid methods are proposed. Numerical results and
comparisons between different methods are reported in Section 4.
Section 5 concludes the paper.

2. Exact penalty function method (EPM)

Nonlinear constrained optimization problems can be solved
through solving a sequence of box-constrained optimization prob-
lems by augmenting the constraint functions to the objective
function using the penalty function method [6,33], to form an
augmented objective function. For optimization problems with
equality and inequality constraints, the penalty parameter in the
augmented objective function is, in principle, required to go to
infinity for achieving feasibility of the solution obtained. However,
this is clearly undoable. On the other hand, the exact penalty func-
tion method introduced in [31,32] does not require the penalty
parameter to go to infinity [31,32] for achieving feasibility of the
solution obtained. In what follows, the exact penalty function
approach proposed in [31] will be briefly described.

Let us first define the constraint violation function on X as fol-
lows:

I m
Gl =Y [P + ) _[max(g(x), 0}, (5)
i=1 Jj=1

It is clear that G(x)=0 if and only if x satisfies the equality con-
straints (2) and the inequality constraints (3). Furthermore, G(x) is
a continuously differentiable function [31].

For a given € > 0, we define the following penalty function on
X x [0, €]:

fx), if €=0,G(x)=0;
Fo(x, €)= { f(X)+€%G(x)+0€P, if € e (0,€]; (6)
00, if €=0,G(x)+0;

where ¢>0 is a penalty parameter, ¢ and B are two positive
constants satisfying 1 < S <a.

Instead of solving Problem (P) directly, let us consider the fol-
lowing optimization problem:

min  Fy(x, €). (7)
(x,€) e Xx[0,€]

Let this problem be referred to as Problem (P ). For a given o, min-
imizing F,(x, €) with respect to (x, €) € X x [0, €] is equivalent to
minimizing f(x) +€-*G(x)+o€P. Thus, if o is increased, €? will be
decreased. Hence, the constraint violation G(x) will be decreased.
Therefore, the increase of the penalty parameter o will eventually
yield a feasible solution.

The two theorems in Appendix A reveal the relationship
between Problem (P) and Problem (P, ).

Theorem 2 in Appendix A shows that there exists a thresh-
old &, such that for all ¢ > &, any local solution of Problem (P,)
is also a local solution of Problem (P). This important property
is not shared by the augmented Lagrangian penalty method [28],
for which the penalty parameter is, in principle, required to go to
infinity ensuring feasibility of the solution obtained. Since global
solutions are included in local solutions, a global solution of Prob-
lem (Py,) will yield a global solution of Problem (P). From this
observation together with Theorems 1 and 2 in Appendix A, the
exact penalty method (EPM) is utilized to convert Problem (P) into
Problem (P ). In Section 3, an algorithm is proposed to solve Prob-
lem (P) through solving a sequence of Problem (P, ). This algorithm
is referred to as Algorithm 1.
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