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a b s t r a c t 

Constructing a graph to represent the structure among data objects plays a fundamental role in various 

data mining tasks with graph-based learning. Since traditional pairwise distance-based graph construc- 

tion is sensitive to noise and outliers, sparse representation based graphs (e.g., � 1 -graphs) have been 

proposed in the literature. Although � 1 -graphs prove powerful and robust for many graph-based learn- 

ing tasks, it suffers from weak locality and high computation costs. In this paper, we propose a local- 

ity weighted sparse representation (LWSR), which aims for good preservation of the locality structure 

among data objects and a significant reduction of the computation time. LWSR approximates each object 

as a sparse linear combination of its nearest neighbors, and weights their corresponding coefficients by 

their distances to the target object. Experimental results show that LWSR-graph based learning methods 

outperform state-of-the-art methods in both effectiveness and efficiency for graph-based learning. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Graph-based learning is a popular class of approaches that can 

be used in many data mining tasks, such as unsupervised cluster- 

ing [1] , semi-supervised learning [2] , and manifold learning [3] . For 

graph-based learning, a critical step is to construct a directed or 

undirected graph that represents the proximity structure among 

data objects. In traditional graphs, such as ε-ball neighbors, k - 

nearest neighbors, and fully-connected Gaussian Radial Basis Func- 

tion (RBF) graphs [4] , the edges and weights among data objects 

are determined by pairwise Euclidean distances in the original data 

space. However, such distances are sensitive to noise and outliers, 

and are subject to the curse of dimensionality [5] . In other words, 

data with noise, outlying objects, and high-dimensions tend to dra- 

matically distort the structure of the graph. 

A widely used principle for noise reduction in high-dimensional 

space is to construct sparse estimates. The � 1 -graph [6] , for ex- 

ample, is based on a modified sparse representation framework, 

which represents each data object by a sparse linear combina- 

tion of all other data objects [7] . A series of algorithms based 

upon the � 1 -graph are obtained by using � 1 -regularization or � 1 - 

minimization, such as sparse subspace clustering [1] , label propa- 
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gation [8] , sparse reconstruction embedding [9] , sparse representa- 

tion based linear projections [ 10 ], and sparsity preserving projec- 

tions [11] . 

Although it has been shown that these sparse representation 

based graphs outperform pairwise distance-based graphs in most 

graph-based learning tasks or approaches [6] , they do have lim- 

itations. One limitation is that sparse representation using � 1 - 

regularization for constructing graphs only guarantees the spar- 

sity property, and does not preserve the locality. In other words, 

the locality structure in the original space is lost in the coefficient 

space. Another limitation is that a non-smooth convex problem 

must be solved whose computational complexity is proportional to 

the cube of the problem size. When the size of a dataset is large, 

the computation cost of solving the sparse representation becomes 

prohibitively high. 

In this paper, we propose a locality weighted sparse represen- 

tation (LWSR), which is expected to preserve the locality struc- 

ture and consume much less computation time than the original 

sparse representation. More specifically, LWSR selects a set of lo- 

cal objects and obtains the sparse representation over these se- 

lected local objects only. Unlike � 1 -graph, which optimizes the 

sparse coefficients over all other objects, LWSR’s local embedding 

with respect to nearest neighbors has the advantage of consum- 

ing much less computation time while capturing most of the in- 

formation. Furthermore, LWSR weights the reconstruction coeffi- 

cients by the neighbored objects’ distances to the target object. By 
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integrating the LWSR-graph into popular graph-based learning 

frameworks, including spectral clustering, subspace learning, and 

semi-supervised learning, we demonstrated the effectiveness of 

the proposed method with comprehensive experiments. Our con- 

tribution can be highlighted as follows. 

• We proposed a novel scheme (LWSR) for finding sparse similar- 

ity graphs by reconstructing the target object with its neighbors 

under sparse representation framework. 

• The proposed LWSR can well balance locality and sparsity in 

the graph; and it is to reduce the computation complexity of 

� 1 − graph much. 

• We show theoretical analysis to prove that the LWSR-graph 

must be block diagonal under some conditions,and thus it can 

well reveal the true subspace membership. 

• The proposed algorithm is robust to various corruptions and 

real occlusions in the context of subspace clustering, subspace 

learning, and semi-supervised learning. 

• Theoretical analysis and experiments demonstrate that the 

main advantage of the proposed sparse representation based 

graph is the much lower computational complexity and for sub- 

space learning it also archives higher accuracy than all counter- 

parts due to the well locality preservation. 

The rest of the paper is organized as follows. Section 2 presents 

some preliminaries and related work on graph construction meth- 

ods. In Section 3 , the proposed LWSR method is described and dis- 

cussed in detail. We derive a series of methods using LWSR based 

graphs in Section 4 , including spectral clustering, subspace learn- 

ing, and semi-supervised learning. Section 5 summarizes experi- 

mental results to evaluate the effectiveness and efficiency of the 

proposed algorithm in graph-based learning. Finally, we draw con- 

clusions and point out possible future work in Section 6 . 

2. Preliminaries and related works 

In this section, we review and discuss existing graph-based 

learning methods using sparse representation. It is noteworthy 

that although the intentions of different graph-based learning al- 

gorithms vary, they have a similar purpose to construct a graph 

structure that models the contextual information of the data mani- 

fold. Suppose we have a dataset X = [ � x 1 , � x 2 , . . . , � x n ] ∈ R 

m ×n consist- 

ing of n data objects, where � x i = [ x i 1 , x i 2 , . . . , x im 

] T ∈ R 

m is a vector 

representing the i th data object. With these data objects, a graph 

G = (V, E) may be built, where the vertex set V is the set of all data 

objects in X , and the edges in E may be weighted or unweighted, 

depending on the graph construction method. 

2.1. Sparse representation 

In order to simultaneously determine the graph adjacency 

structure and the graph weights, sparse representation is exploited 

to obtain a sparse coefficient vector for each data object. Com- 

ing from compressed sensing, sparse representation makes the as- 

sumption that each object can always be approximately repre- 

sented by a linear combination of other objects, where the coef- 

ficients should be sparse. Sparse representation has a wide appli- 

cation in image analysis [12,13] . Motivated by the fact that an ideal 

affinity matrix is block diagonal and sparse, sparse representation 

based graphs, such as sparse subspace clustering [1] , sparsity in- 

duced similarity (SIS) [8] , � 1 directed graph [2] , and � 1 -graph [6] , 

attempt to solve the following sparse representation problem as an 

optimization problem for each data object: 

min 

�
 αi 

‖ 

�
 αi ‖ 0 , s.t. � x i = X −i � αi , (1) 

where ‖ · ‖ 0 denotes the � 0 -norm of a vector, counting the num- 

ber of non-zero elements in the vector; X −i is the data matrix 

that omits � x i ; and 

�
 αi = [ αi, 1 , . . . , αi,i −1 , αi,i +1 , . . . , αi,n ] 

T ∈ R 

n −1 is 

the sparse representation of � x i over all other data objects. Donoho 

proved that if a matrix satisfies the restricted isometry property, 

Eq. (1) has a unique solution [14] . However, solving Eq. (1) is NP- 

hard, as the objective function is non-convex. In other words, there 

is no known approach to find the sparsest solution that is signif- 

icantly more efficient than exhausting all subsets of the compo- 

nents for � αi . Researchers in emerging theories of compressed sens- 

ing reveal that the non-convex optimization in Eq. (1) is equal to 

the following convex � 1 optimization problem, if the optimal � αi is 

sparse enough [15] : 

min 

�
 αi 

‖ 

�
 αi ‖ 1 , s.t. � x i = X −i � αi , (2) 

where ‖ · ‖ 1 denotes the � 1 -norm of a vector, summing the abso- 

lute value of each entry in the vector. This problem can be solved 

in polynomial time using convex programming tools, and is known 

to prefer sparse solutions [16] . 

The solution of sparse representation can also be written for all 

objects in matrix form as: 

min 

A 
‖ A ‖ 1 , s.t. X = X A and diag (A ) = 

�
 0 , (3) 

where A ∈ R 

n ×n is the sparse representation matrix of the dataset 

over itself; ‖ A ‖ 1 is the � 1 −norm of the matrix A , summing the ab- 

solute value of each element; the i th column vector � αi in A denotes 

the sparse representation of � x i ; diag (·) is the vector of the diago- 

nal elements of a square matrix; and 

�
 0 ∈ R 

n denotes a vector with 

all zero elements. 

Since real world data contain noise, it may not be possible to 

express each data object exactly as a sparse representation of the 

other data objects. Therefore, the sparse solution A can be approxi- 

mately obtained by solving the following � 1 -optimization problem: 

min 

A 
‖ A ‖ 1 + λ‖ Z‖ F , s.t. X = X A + Z and diag (A ) = 

�
 0 , (4) 

where ‖ · ‖ F represents the Frobenius norm of a matrix [1] ; Z ∈ 

R 

m ×n corresponds to the matrix of reconstruction error; and λ
> 0 denotes the regularization parameter. It is worth noting that 

Eq. (4) is widely known as the least absolute shrinkage and selec- 

tion operator optimization (LASSO) [17] . 

2.2. Graph construction 

When it comes to graph construction, an interpretation for the 

sparse coefficient αij is how much data object � x j contributes to 

the reconstruction of � x i . The vector � αi can be treated as a vector of 

contribution weights from all data objects to the reconstruction of 

�
 x i . Therefore, the weight matrices of the proximity graph may be 

defined in various ways, such as: 

• W = A as in � 1 -graph [6] ; 

• W = | A | as in � 1 directed graph [2] ; 

• W = 

˜ A + ̃ A T 

2 as in SIS [8] , where [ ̃  A ] i j = 

max { 0 ,αi j } ∑ 

k max { 0 ,αik } ; and 

• W = max 

{ 

0 , 
�
 αi ·� α j 

‖ � αi ‖ 2 ×‖ � α j ‖ 2 
} 

as in [18] . 

Based on Eqs. (1) –(4) , it is clear that all these sparse represen- 

tation based graphs aim to obtain a similarity graph by solving an 

� 1 -minimization problem. In spite of the success of the sparse rep- 

resentation based graphs in several important applications [19,20] , 

the locality structure is not well preserved. More specifically, the 

goal of sparse representation is to learn sparse weights over other 

data objects. Weights may be allocated to a distant data object to 

favor sparsity. 

Besides the problem of loss of locality in sparse representation, 

another drawback is the computation cost for optimizing the re- 

construction coefficients. It is known that the objective function of 
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