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a b s t r a c t 

Given a set of n elements separated by a pairwise distance matrix, the minimum differential disper- 

sion problem ( Min-Diff DP ) aims to identify a subset of m elements ( m < n ) such that the difference 

between the maximum sum and the minimum sum of the inter-element distances between any two 

chosen elements is minimized. We propose an effective iterated local search (denoted by ILS_MinDiff) 

for Min-Diff DP . To ensure an effective exploration and exploitation of the search space, ILS_MinDiff it- 

erates through three sequential search phases: a fast descent-based neighborhood search phase to find a 

local optimum from a given starting solution, a local optima exploring phase to visit nearby high-quality 

solutions around a given local optimum, and a local optima escaping phase to move away from the cur- 

rent search region. Experimental results on six data sets of 190 benchmark instances demonstrate that 

ILS_MinDiff competes favorably with the state-of-the-art algorithms by finding 131 improved best results 

(new upper bounds). 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Let N = { e 1 , e 2 , . . . , e n } be a set of n elements and d ij be the 

distance between e i and e j according to a given distance metric 

such that d ij > 0 if i � = j and d i j = 0 otherwise. The minimum 

differential dispersion problem ( Min-Diff DP ) is to identify a subset 

S ⊂ N of a given cardinality m ( m < n ), such that the difference 

between the maximum sum and the minimum sum of the inter- 

element distances between any two elements in S is minimized. 

Formally, Min-Diff DP can be described in the following way. 

Let �( e v ) be the sum of pairwise distances between an element 

e v ∈ S and the remaining elements in S , that is: 

�(e v ) = 

∑ 

e u ∈ S,u � = v 
d u v . (1) 

The objective value f of the solution S is then defined by the 

following differential dispersion: 

f (S) = max 
e u ∈ S 

{ �(e u ) } − min 

e v ∈ S 
{ �(e v ) } . (2) 
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Then, Min-Diff DP is to find a subset S ∗ ⊂ N of size m with the 

minimum differential dispersion, i.e., 

S ∗ = arg min 

S∈ �
f (S) . (3) 

where � is the search space including all possible subsets of size 

m in N , i.e., � = { S : S ⊂ N and | S| = m } . The size of � is extremely 

large, up to a maximum number of 
(

n 
m 

)
= 

n ! 
m !(n −m )! 

. 

Min-Diff DP is one of many diversity or dispersion problems 

[1,30] which basically aim to find a subset S from a given set of 

elements, such that a distance-based objective function over the 

elements in S is maximized or minimized. These problems can be 

further classified according to two types of objective functions: 

• Efficiency-based measures which consider some dispersion 

quantity for all elements in S . This category mainly includes 

the maximum diversity problem (MDP) and the max-min diver- 

sity problem (MMDP), which respectively maximizes the total 

sum of the inter-element distances of any two chosen elements 

and the minimum distance of any two chosen elements. 

• Equity-based measures which guarantee equitable dispersion 

among the selected elements. This category includes three 

problems: (i) the maximum mean dispersion problem (Max-Mean 

DP) maximizes the average inter-element distance among the 

chosen elements; (ii) the maximum min-sum dispersion problem 

(Max-Min-sum DP) maximizes the minimum sum of the inter- 

element distances between any two chosen elements; (iii) the 
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minimum differential dispersion problem considered in this work. 

It is worth noting that the cardinality of subset S is fixed except 

for Max-Mean DP. 

In addition to their theoretical significance as NP-hard prob- 

lems, diversity problems have a variety of real-world applications 

in facility location [21] , pollution control [9] , maximally di- 

verse/similar group selection (e.g., biological diversity, admission 

policy formulation, committee formation, curriculum design, 

market planning) [17,27,28] , densest subgraph identification [20] , 

selection of homogeneous groups [8] , web pages ranking [19,33] , 

community mining [32] , and network flow problems [7] . 

In this study, we focus on Min-Diff DP , which is known to 

be strongly NP-hard [30] . Min-Diff DP can be formulated as a 

0–1 mixed integer programming problem (MIP) [30] . Thus it 

can be conveniently solved by MIP solvers like IBM ILOG CPLEX 

Optimizer (CPLEX). However, being an exact solver, CPLEX is only 

able to solve instances of small size (up to n = 50 and m = 15 ), 

while requiring high CPU times (more than 2500 s) [30] . To 

handle larger instances, heuristic and meta-heuristic algorithms 

are often preferred to find near-optimal solutions. In recent years, 

several heuristic approaches have been proposed in the literature 

[13,28,30] . In particular, in 2015, based on greedy randomized 

adaptive search procedure (GRASP), variable neighborhood search 

(VNS) and exterior path relinking (EPR), Duarte et al. proposed 

several effective hybrid heuristics [13] . Very recently (2016), 

Mladenovi ́c et al. proposed an improved VNS algorithm which 

uses the swap neighborhood both in its descent and shaking 

phases [28] . This new VNS algorithm significantly outperforms the 

previous best heuristics reported in [13] and is the current best 

performing algorithm available in the literature for Min-Diff DP . 

We will use it as our main reference for the computational studies. 

Our literature review showed that, contrary to other diversity 

problems like MDP and Max-Min DP, for which many exact and 

heuristic methods have been investigated, there are only a very 

limited number of studies for Min-Diff DP . In this work, we par- 

tially fill the gap in terms of heuristic solving of Min-Diff DP , by 

proposing an effective heuristic algorithm for the problem (named 

ILS_MinDiff). We identify the main contributions of this work as 

follows. 

First, in terms of algorithmic design, the proposed ILS_MinDiff

algorithm is the first adaptation of the general three-phase search 

method to Min-Diff DP ( Section 2 ). Compared to other meta- 

heuristic framework, this method has the main advantage of 

being conceptually simple and easy implementation. The proposed 

algorithm iterates through a descent-based local optimization 

phase, a local optima exploring phase, and a local optima es- 

caping phase ( Section 3 ). Like [13,28] , the descent-based local 

optimization phase is based on the conventional swap neighbor- 

hood. Meanwhile, ILS_MinDiff distinguishes itself from the existing 

heuristic algorithms by at least two specific features. Its local 

optima exploring phase applies a weak perturbation technique 

(based on deterministic tournament selection) to discover nearby 

local optima around a given local optimum ( Section 3.4 ). On the 

other hand, the local optima escaping phase calls for a strong 

perturbation technique (based on parametric random selection) to 

move away from deep local optimum traps ( Section 3.5 ). 

Second, in terms of performance, we present 131 improved 

best-known results (i.e., new lower bounds) out of 190 popular 

Min-Diff DP benchmarks ( ≈ 69%). These improved lower bounds 

constitute a valuable contribution to Min-Diff DP studies since 

they can be used as new reference values to assess other Min-Diff

DP heuristic algorithms. These tightened lower bounds could 

also be used within an exact algorithm for better bounding and 

possibly leading to an optimality proof of some benchmark in- 

stances. Together with the equal best-known results for other 42 

instances, the computational outcomes confirm the relevance of 

the proposed algorithm. 

Third, the availability of the source code of our ILS_MinDiff

algorithm (see Section 4.2 ) contributes favorably to future research 

on Min-Diff DP and related problems. Specifically, the code can 

be used to perform comparative studies or solve other problems 

that can be formulated as Min-Diff DP. It can also serve as a key 

component (local optimizer) of more sophisticated Min-Diff DP 

algorithms. 

The remainder of the paper is organized as follows. In the next 

section, we present a brief literature review on the iterated local 

search framework and its two recent variants. In Section 3 , we 

describe the general framework and the key components of the 

proposed algorithm. In Section 4 , we show an extensive exper- 

imental comparison between our algorithm and state-of-the-art 

algorithms. A parameter analysis is provided in Section 5 , followed 

by conclusions in Section 6 . 

2. Related work on applications of iterated local search 

As one of the most widely-used meta-heuristic approaches, 

Iterated local search (ILS) [24] has been successfully applied to 

solve a variety of combinatorial optimization problems. In spite of 

its conceptual simplicity, it has led to a number of state-of-the-art 

results. Fig. 1 shows that over the last two decades, there has 

been an increasing interest in ILS, as witnessed by the number of 

publications related to ILS. 

ILS is a two-phase approach which explores iteratively the 

search zones around the last local optimum discovered by a local 

search procedure. Typically, an ILS algorithm repeats a local search 

phase to find a local optimal solution from a starting point and a 

perturbation phase to modify the local optimum to generate a new 

starting point for the next iteration ( Algorithm 1 ). Based on the 

Algorithm 1 Iterated local search. 

1: S 0 ← GenerateInitialSolution () 
2: S ∗ ← LocalSearch (S 0 ) 
3: while a stopping condition is not reached do 

4: S ′ ← Perturbation (S ∗, history ) 
5: S ∗′ ← LocalSearch (S ′ ) 
6: S ∗ ← AcceptanceCriterion (S ∗, S ∗′ 

, history ) 
7: end while 

general ILS framework, several variants and extended approaches 

have recently been proposed, including two representative meth- 

ods called breakout local search (BLS) [2,6] and three-phase search 

(TPS) [15] . The effectiveness of BLS and TPS have been verified 

on a variety of hard optimization problems and applications (see 

examples of Table 1 ). In the following, we present a brief review 

of these ILS variants. 

Breakout local search introduced in [2,6] combines local search 

with a dedicated and adaptive perturbation mechanism. Its basic 

idea is to use a descent-based local search procedure to intensify 

the search in a given search region, and to perform dedicated 

perturbations to jump into a new promising search region once 

a local optimum is encountered. BLS is characterized by its adap- 

tive perturbation. At the perturbation phase, BLS attempts to 

achieve the most suitable degree of diversification by dynamically 

determining the number of perturbation moves (i.e., the jump 

magnitude) and by adaptively selecting between several types of 

pre-defined perturbation operations of different intensities, which 

is achieved through the use of information from specific memory 

structures. As summarized in Table 1 , BLS has reported excellent 

performances for several well-known combinatorial optimization 

problems. Algorithm 2 describes the general framework of BLS. 

Please cite this article as: Y. Zhou, J.-K. Hao, An iterated local search algorithm for the minimum differential dispersion problem, 

Knowledge-Based Systems (2017), http://dx.doi.org/10.1016/j.knosys.2017.03.028 

http://dx.doi.org/10.1016/j.knosys.2017.03.028


Download English Version:

https://daneshyari.com/en/article/4946281

Download Persian Version:

https://daneshyari.com/article/4946281

Daneshyari.com

https://daneshyari.com/en/article/4946281
https://daneshyari.com/article/4946281
https://daneshyari.com

