
Knowledge-Based Systems 117 (2017) 46–55

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

A parallel algorithm for Bayesian network structure learning from

large data sets

Anders L. Madsen

a , b , ∗, Frank Jensen

a , Antonio Salmerón

d , Helge Langseth

c ,
Thomas D. Nielsen

b

a HUGIN EXPERT A/S, DK-90 0 0 Aalborg, Denmark
b Aalborg University, DK-9220 Aalborg, Denmark
c Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
d University of Almería, ES-04120 Almería, Spain

a r t i c l e i n f o

Article history:

Received 28 February 2016

Revised 8 July 2016

Accepted 23 July 2016

Available online 25 July 2016

Keywords:

Bayesian network

PC algorithm

Parallelization

a b s t r a c t

This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The

parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based al-

gorithm consisting of five steps where the first step is to perform a set of (conditional) independence

tests while the remaining four steps relate to identifying the structure of the Bayesian network using

the results of the (conditional) independence tests. In this paper, we describe a new approach to paral-

lelization of the (conditional) independence testing as experiments illustrate that this is by far the most

time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at ran-

dom from five different real-world Bayesian networks. The algorithm is also compared empirically with

a process-based approach where each process manages a subset of the data over all the variables on the

Bayesian network. The results demonstrate that significant time performance improvements are possible

using both approaches.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A Bayesian network (BN) [1–5] is a powerful model for proba-

bilistic inference. It consists of two main parts: a graphical struc-

ture specifying a set of dependence and independence relations

between its variables and a set of conditional probability distribu-

tions quantifying the strengths of the dependence relations. The

graphical nature of a Bayesian network makes it well-suited for

representing complex problems, where the interactions between

entities, represented as variables, are described using conditional

probability distributions (CPDs). Both parts can be elicited from ex-

perts or learnt from data, or a combination. Here we focus on

learning the graphical structure from data using a variant of the

PC algorithm [6] exploiting parallel computations.

Large data sets both in terms of the number of variables and

cases may challenge the efficiency of pure sequential algorithms

for learning the structure of a Bayesian network from data. Since

∗ Corresponding author.

E-mail addresses: alm@hugin.com (A.L. Madsen), fj@hugin.com (F. Jensen),

antonio.salmeron@ual.es (A. Salmerón), helgel@idi.ntnu.no (H. Langseth),

tdn@cs.aau.dk (T.D. Nielsen).

the computational power of computers is ever increasing and ac-

cess to computers supporting parallel processing is improving, it

is natural to consider exploiting parallel computations to improve

the performance of learning algorithms. A number of different ap-

proaches to parallel structure learning have been considered in the

literature. In [7] the authors describe a MapReduce-based method

for learning Bayesian networks from massive data using a search

& score algorithm while [8] describes a MapReduce-based method

for machine learning on multi-core computers. Also, [9] presents

the R package bnlearn which provides implementations of some

structure learning algorithms including support for parallel com-

puting. [10] introduces a method for accelerating Bayesian network

parameter learning using Hadoop and MapReduce. Other relevant

work on parallelization of learning Bayesian networks from data

include [11–15] .

In this paper, we consider two different approaches to paral-

lelization of the PC algorithm. First, we describe a new parallel ver-

sion of the PC algorithm for learning the structure of a Bayesian

network from large data sets on a shared memory computer us-

ing threads. The proposed parallel PC algorithm is inspired by the

work in [16] on vertical parallelization of TAN learning using Bal-

anced Incomplete Block (BIB) designs [17] . Second, we consider

http://dx.doi.org/10.1016/j.knosys.2016.07.031

0950-7051/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.07.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alm@hugin.com
mailto:fj@hugin.com
mailto:antonio.salmeron@ual.es
mailto:helgel@idi.ntnu.no
mailto:tdn@cs.aau.dk
http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://creativecommons.org/licenses/by/4.0/

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 47

an embarrassingly parallel version of the PC algorithm. This ap-

proach uses processes where each process manages a subset of

the data over all variables. In order to distinguish between the

two approaches, the latter approach is referred to as the hori-

zontal PC algorithm . The horizontal PC algorithm is developed for

distributed memory concurrent computers using the standardized

and portable message-passing system referred to as the Message

Passing Interface (MPI) [18] . The horizontal PC algorithm also takes

advantage of BIB designs to improve efficiency. The results of an

empirical evaluation show a significant improvement in time per-

formance over a purely sequential implementation for both ap-

proaches.

This paper is organized as follows. Section 2 presents pre-

liminaries and notation, including an introduction to BIB designs

and the PC algorithm. Section 3 describes the details of both

methods for parallel structure learning while Section 4 presents

the results of an empirical evaluation of the algorithms on both

real-world Bayesian networks and examples from literature. Fi-

nally, Section 5 gives a discussion of the results and Section 6

conclusions.

2. Material and methods

Let X = { X 1 , . . . , X n } be a set of random variables such that

dom(X) is the state space of X when X is discrete. The state space

size is || X|| = | dom (X) | . A BN N = (X , G, P) over the set X con-

sists of an acyclic directed graph (DAG) G = (V, E) with vertices V

and edges E and a set of CPDs P = { P (X | pa (X)) : X ∈ X } , where

pa(X) denotes the parents of X in G . The BN N specifies a joint

probability distribution over X :

P (X) =

n ∏

i =1

P (X i | pa (X i)) .

We use upper case letters, e.g., X i and Y , to denote variables

while sets of variables are denoted using calligraphy letters, e.g., X

and S . In this paper, we only consider discrete variables.

We let D = (c 1 , . . . , c N) denote a data set of N complete cases

over variables X = { X 1 , . . . , X n } and we let I(X, Y ;S) denote condi-

tional independence between X and Y given S . When learning the

structure of a DAG G from D, we use a test statistic to test the

hypothesis I(X, Y ;S) based on counts in D. That is, to test the con-

ditional independence hypothesis I(X, Y ;S) between two discrete

variables X and Y conditional on S based on counts in D, we use

the test statistic G

2 =

∑

S= s G

2
s where

G

2
s = 2

∑

x,y

O xy | s log
O xy | s
E xy | s

, (1)

where O xy | s is the observed count for x and y given s and E xy | s is

the expected count for x and y given s under the null-hypothesis.

2.1. PC algorithm

The task of learning the structure of a Bayesian network from

D amounts to determining the structure G . The PC algorithm of

[6] consists of five steps:

1. Determine pairwise (conditional) independence I(X, Y ;S) .

2. Identify the skeleton of G .

3. Identify v -structures in G .

4. Identify derived directions in G .

5. Complete orientation of G making it a DAG.

Step 1 is performed such that tests for marginal independence

(i.e., S = ∅) are performed first followed by conditional indepen-

dence tests where the size of S iterates over 1 , 2 , 3 , . . . taking the

adjacency of vertices into consideration. That is, in the process

of determining the set of conditional independence statements

I(X, Y ;S) , the results produced earlier are exploited to reduce the

number of tests. This means that we stop testing conditional in-

dependence of X and Y once a subset S has been identified such

that the independence hypothesis is not rejected. When testing

the conditional independence hypothesis I(X, Y ;S) , the condition-

ing set S is restricted to contain only potential neighbors of either

X or Y , i.e., a variable Z is excluded from S, if the independence hy-

pothesis between X (or Y) and Z was previously not rejected. This

is referred to as the PC

∗ algorithm by [6] , but we will refer to it as

the PC algorithm.

Steps 2–5 use the results of Step 1 to determine the DAG G .

We will not consider Step 2–5 further in this paper as experi-

ments demonstrate that the combined time cost of these steps

is negligible compared to the time cost of Step 1. This is clearly

demonstrated in the empirical evaluation. The interested reader is

referred to, e.g., [6] for more details.

Hence, our proposal for scaling up the PC algorithm is based

on parallelizing Step 1, which involve the calculation of the G

2

score (see Eq. (1)) between each pair of variables. An immediate

approach for scaling up the algorithm could be to simply generate

one computing thread for each pair of variables and then process

the threads in parallel. However, with n variables this approach

would require accessing the underlying database
(

n
2

)
times, induc-

ing a significant overhead in terms of disk/network access. Alterna-

tively, one might group the variables in blocks so that each block

only accesses the data a single time in order to calculate the suf-

ficient statistics required for computing the G

2 score for all pairs

of variables within the block. A key issue here is finding an appro-

priate block size and at the same time ensuring that the blocks,

in combination, guarantee that all pairs of variables are considered

exactly once.

To get an intuitive understanding of this process we can as

an analogy consider the organization of the Speedway World

Championship (SWC). After the initial pre-qualifying rounds for

the SWC, the remaining 16 highest ranked riders should be

compared to each other to obtain a final ranking of the riders.

One approach to achieve this would be to pair-up the riders so

that each rider will participate in 15 races, yielding a total of

120 rounds with two riders competing in each round. This setup

would put a strain on the riders and not use the full capacity

of the speedway track, which is designed to accommodate four

riders simultaneously. Instead, the SWC employs a heat-system

ensuring that each of the 16 riders will meet each of the other

riders at some time during the competition. Specifically, the

heat-system consists of 20 heats with four riders in a heat. Each

rider participates in only five heats, and within a single heat all

riders compete jointly, thereby meeting each other. After com-

pleting the 20 heats, all pairs of riders will have met exactly

once. This can also be seen by labeling the riders { 0 , . . . , 15 } and

constructing these heats: H 1 = { 3 , 6 , 12 , 15 } , H 2 = { 4 , 5 , 10 , 13 } ,
H 3 = { 0 , 4 , 6 , 7 } , H 4 = { 0 , 10 , 11 , 15 } , H 5 = { 7 , 10 , 12 , 14 } , H 6 =

{ 0 , 8 , 9 , 14 } , H 7 = { 0 , 1 , 3 , 13 } , H 8 = { 1 , 6 , 8 , 10 } , H 9 = { 7 , 9 , 13 , 15 } ,
H 10 = { 1 , 5 , 14 , 15 } , H 11 = { 8 , 11 , 12 , 13 } , H 12 = { 5 , 6 , 9 , 11 } , H 13 =

{ 1 , 4 , 9 , 12 } , H 14 = { 3 , 5 , 7 , 8 } , H 15 = { 3 , 4 , 11 , 14 } , H 16 = { 2 , 6 , 13 ,

14 } , H 17 = { 1 , 2 , 7 , 11 } , H 18 = { 0 , 2 , 5 , 12 } , H 19 = { 2 , 4 , 8 , 15 } , and

H 20 = { 2 , 3 , 9 , 10 } .
When it comes to computing the G

2 scores, the 16 riders cor-

respond to variables and each heat represents a block consisting

of four variables to be pairwise compared. Thus, rather than han-

dling pairs of variables independently and having to make data ac-

cess
(

16
2

)
= 120 times, we can instead make 20 blocks/heats of four

variables each and thereby only having to access the full dataset

20 times. Note that with the particular setup above, we are guar-

anteed not to make redundant calculations as the G

2 score is com-

puted exactly once for each pair X i , X j , 1 ≤ i, j ≤ n .

Download English Version:

https://daneshyari.com/en/article/4946324

Download Persian Version:

https://daneshyari.com/article/4946324

Daneshyari.com

https://daneshyari.com/en/article/4946324
https://daneshyari.com/article/4946324
https://daneshyari.com

