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a b s t r a c t 

This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The 

parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based al- 

gorithm consisting of five steps where the first step is to perform a set of (conditional) independence 

tests while the remaining four steps relate to identifying the structure of the Bayesian network using 

the results of the (conditional) independence tests. In this paper, we describe a new approach to paral- 

lelization of the (conditional) independence testing as experiments illustrate that this is by far the most 

time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at ran- 

dom from five different real-world Bayesian networks. The algorithm is also compared empirically with 

a process-based approach where each process manages a subset of the data over all the variables on the 

Bayesian network. The results demonstrate that significant time performance improvements are possible 

using both approaches. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

A Bayesian network (BN) [1–5] is a powerful model for proba- 

bilistic inference. It consists of two main parts: a graphical struc- 

ture specifying a set of dependence and independence relations 

between its variables and a set of conditional probability distribu- 

tions quantifying the strengths of the dependence relations. The 

graphical nature of a Bayesian network makes it well-suited for 

representing complex problems, where the interactions between 

entities, represented as variables, are described using conditional 

probability distributions (CPDs). Both parts can be elicited from ex- 

perts or learnt from data, or a combination. Here we focus on 

learning the graphical structure from data using a variant of the 

PC algorithm [6] exploiting parallel computations. 

Large data sets both in terms of the number of variables and 

cases may challenge the efficiency of pure sequential algorithms 

for learning the structure of a Bayesian network from data. Since 
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the computational power of computers is ever increasing and ac- 

cess to computers supporting parallel processing is improving, it 

is natural to consider exploiting parallel computations to improve 

the performance of learning algorithms. A number of different ap- 

proaches to parallel structure learning have been considered in the 

literature. In [7] the authors describe a MapReduce-based method 

for learning Bayesian networks from massive data using a search 

& score algorithm while [8] describes a MapReduce-based method 

for machine learning on multi-core computers. Also, [9] presents 

the R package bnlearn which provides implementations of some 

structure learning algorithms including support for parallel com- 

puting. [10] introduces a method for accelerating Bayesian network 

parameter learning using Hadoop and MapReduce. Other relevant 

work on parallelization of learning Bayesian networks from data 

include [11–15] . 

In this paper, we consider two different approaches to paral- 

lelization of the PC algorithm. First, we describe a new parallel ver- 

sion of the PC algorithm for learning the structure of a Bayesian 

network from large data sets on a shared memory computer us- 

ing threads. The proposed parallel PC algorithm is inspired by the 

work in [16] on vertical parallelization of TAN learning using Bal- 

anced Incomplete Block (BIB) designs [17] . Second, we consider 
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an embarrassingly parallel version of the PC algorithm. This ap- 

proach uses processes where each process manages a subset of 

the data over all variables. In order to distinguish between the 

two approaches, the latter approach is referred to as the hori- 

zontal PC algorithm . The horizontal PC algorithm is developed for 

distributed memory concurrent computers using the standardized 

and portable message-passing system referred to as the Message 

Passing Interface (MPI) [18] . The horizontal PC algorithm also takes 

advantage of BIB designs to improve efficiency. The results of an 

empirical evaluation show a significant improvement in time per- 

formance over a purely sequential implementation for both ap- 

proaches. 

This paper is organized as follows. Section 2 presents pre- 

liminaries and notation, including an introduction to BIB designs 

and the PC algorithm. Section 3 describes the details of both 

methods for parallel structure learning while Section 4 presents 

the results of an empirical evaluation of the algorithms on both 

real-world Bayesian networks and examples from literature. Fi- 

nally, Section 5 gives a discussion of the results and Section 6 

conclusions. 

2. Material and methods 

Let X = { X 1 , . . . , X n } be a set of random variables such that 

dom( X ) is the state space of X when X is discrete. The state space 

size is || X|| = | dom (X ) | . A BN N = (X , G, P) over the set X con- 

sists of an acyclic directed graph (DAG) G = (V, E) with vertices V 

and edges E and a set of CPDs P = { P (X | pa (X )) : X ∈ X } , where 

pa( X ) denotes the parents of X in G . The BN N specifies a joint 

probability distribution over X : 

P (X ) = 

n ∏ 

i =1 

P (X i | pa (X i )) . 

We use upper case letters, e.g., X i and Y , to denote variables 

while sets of variables are denoted using calligraphy letters, e.g., X 

and S . In this paper, we only consider discrete variables. 

We let D = (c 1 , . . . , c N ) denote a data set of N complete cases 

over variables X = { X 1 , . . . , X n } and we let I(X, Y ;S) denote condi- 

tional independence between X and Y given S . When learning the 

structure of a DAG G from D, we use a test statistic to test the 

hypothesis I(X, Y ;S) based on counts in D. That is, to test the con- 

ditional independence hypothesis I(X, Y ;S) between two discrete 

variables X and Y conditional on S based on counts in D, we use 

the test statistic G 

2 = 

∑ 

S= s G 

2 
s where 

G 

2 
s = 2 

∑ 

x,y 

O xy | s log 
O xy | s 
E xy | s 

, (1) 

where O xy | s is the observed count for x and y given s and E xy | s is 

the expected count for x and y given s under the null-hypothesis. 

2.1. PC algorithm 

The task of learning the structure of a Bayesian network from 

D amounts to determining the structure G . The PC algorithm of 

[6] consists of five steps: 

1. Determine pairwise (conditional) independence I(X, Y ;S) . 

2. Identify the skeleton of G . 

3. Identify v -structures in G . 

4. Identify derived directions in G . 

5. Complete orientation of G making it a DAG. 

Step 1 is performed such that tests for marginal independence 

(i.e., S = ∅ ) are performed first followed by conditional indepen- 

dence tests where the size of S iterates over 1 , 2 , 3 , . . . taking the 

adjacency of vertices into consideration. That is, in the process 

of determining the set of conditional independence statements 

I(X, Y ;S) , the results produced earlier are exploited to reduce the 

number of tests. This means that we stop testing conditional in- 

dependence of X and Y once a subset S has been identified such 

that the independence hypothesis is not rejected. When testing 

the conditional independence hypothesis I(X, Y ;S) , the condition- 

ing set S is restricted to contain only potential neighbors of either 

X or Y , i.e., a variable Z is excluded from S, if the independence hy- 

pothesis between X (or Y ) and Z was previously not rejected. This 

is referred to as the PC 

∗ algorithm by [6] , but we will refer to it as 

the PC algorithm. 

Steps 2–5 use the results of Step 1 to determine the DAG G . 

We will not consider Step 2–5 further in this paper as experi- 

ments demonstrate that the combined time cost of these steps 

is negligible compared to the time cost of Step 1. This is clearly 

demonstrated in the empirical evaluation. The interested reader is 

referred to, e.g., [6] for more details. 

Hence, our proposal for scaling up the PC algorithm is based 

on parallelizing Step 1, which involve the calculation of the G 

2 

score (see Eq. (1) ) between each pair of variables. An immediate 

approach for scaling up the algorithm could be to simply generate 

one computing thread for each pair of variables and then process 

the threads in parallel. However, with n variables this approach 

would require accessing the underlying database 
(

n 
2 

)
times, induc- 

ing a significant overhead in terms of disk/network access. Alterna- 

tively, one might group the variables in blocks so that each block 

only accesses the data a single time in order to calculate the suf- 

ficient statistics required for computing the G 

2 score for all pairs 

of variables within the block. A key issue here is finding an appro- 

priate block size and at the same time ensuring that the blocks, 

in combination, guarantee that all pairs of variables are considered 

exactly once. 

To get an intuitive understanding of this process we can as 

an analogy consider the organization of the Speedway World 

Championship (SWC). After the initial pre-qualifying rounds for 

the SWC, the remaining 16 highest ranked riders should be 

compared to each other to obtain a final ranking of the riders. 

One approach to achieve this would be to pair-up the riders so 

that each rider will participate in 15 races, yielding a total of 

120 rounds with two riders competing in each round. This setup 

would put a strain on the riders and not use the full capacity 

of the speedway track, which is designed to accommodate four 

riders simultaneously. Instead, the SWC employs a heat-system 

ensuring that each of the 16 riders will meet each of the other 

riders at some time during the competition. Specifically, the 

heat-system consists of 20 heats with four riders in a heat. Each 

rider participates in only five heats, and within a single heat all 

riders compete jointly, thereby meeting each other. After com- 

pleting the 20 heats, all pairs of riders will have met exactly 

once. This can also be seen by labeling the riders { 0 , . . . , 15 } and 

constructing these heats: H 1 = { 3 , 6 , 12 , 15 } , H 2 = { 4 , 5 , 10 , 13 } , 
H 3 = { 0 , 4 , 6 , 7 } , H 4 = { 0 , 10 , 11 , 15 } , H 5 = { 7 , 10 , 12 , 14 } , H 6 = 

{ 0 , 8 , 9 , 14 } , H 7 = { 0 , 1 , 3 , 13 } , H 8 = { 1 , 6 , 8 , 10 } , H 9 = { 7 , 9 , 13 , 15 } , 
H 10 = { 1 , 5 , 14 , 15 } , H 11 = { 8 , 11 , 12 , 13 } , H 12 = { 5 , 6 , 9 , 11 } , H 13 = 

{ 1 , 4 , 9 , 12 } , H 14 = { 3 , 5 , 7 , 8 } , H 15 = { 3 , 4 , 11 , 14 } , H 16 = { 2 , 6 , 13 , 

14 } , H 17 = { 1 , 2 , 7 , 11 } , H 18 = { 0 , 2 , 5 , 12 } , H 19 = { 2 , 4 , 8 , 15 } , and 

H 20 = { 2 , 3 , 9 , 10 } . 
When it comes to computing the G 

2 scores, the 16 riders cor- 

respond to variables and each heat represents a block consisting 

of four variables to be pairwise compared. Thus, rather than han- 

dling pairs of variables independently and having to make data ac- 

cess 
(

16 
2 

)
= 120 times, we can instead make 20 blocks/heats of four 

variables each and thereby only having to access the full dataset 

20 times. Note that with the particular setup above, we are guar- 

anteed not to make redundant calculations as the G 

2 score is com- 

puted exactly once for each pair X i , X j , 1 ≤ i, j ≤ n . 
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