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a b s t r a c t 

This paper proposes a novel accelerating bio-inspired optimizer (ABO) associated with transfer reinforce- 

ment learning (TRL) to solve the reactive power optimization (RPO) in large-scale power systems. A mem- 

ory matrix is employed to represent the memory of different state-action pairs, which is used for knowl- 

edge learning, storage, and transfer among different optimization tasks. Then an associative memory is 

introduced to significantly reduce the dimension of memory matrix, in which more than one element 

can be simultaneously updated by the cooperating multi-bion. The win or learn fast policy hill-climbing 

(WoLF-PHC) is also used to accelerate the convergence. Thus, ABO can rapidly seek the closest solution 

to the exact global optimum by exploiting the prior knowledge of the source tasks according to their 

similarities. The performance of ABO has been evaluated for RPO on IEEE 118-bus system and IEEE 300- 

bus system, respectively. Simulation results verify that ABO outperforms the existing artificial intelligence 

algorithms in terms of global convergence ability and stability, which can raise one order of magnitude 

of the convergence rate than that of others. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nonlinear programming is ubiquitous in power system opera- 

tion, such as reactive power optimization (RPO) [1] , units commit- 

ment (UC) [2] , optimal power flow (OPF) [3] , economic dispatch 

(ED) [4] , etc. Several conventional optimization approaches have 

been employed to solve this issue, including Newton method [5] , 

quadratic programming [6] , interior-point method [7] , etc. How- 

ever, they require an accurate system model and may merely ob- 

tain a local optimum if system nonlinearities, discontinuous func- 

tions and constraints, and functions with multiple local-minima 

exist [8] . 

In order to reduce the full dependence of an accurate sys- 

tem model, an enormous variety of elegant artificial intelligence 

(AI) algorithms, such as artificial bee colony (ABC) [9] , group 

search optimizer (GSO) [10] , ant colony system (ACS) [11] , parti- 

cle swarm optimization (PSO) [12] , genetic algorithm (GA) [13] , 

and reinforcement learning (RL) [14] , have been applied for the 

optimal operation of power systems, which can improve the con- 

vergence of global optimum. In general, these algorithms can be 
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classified into the following four types [15] : (a) evolution-based 

algorithms; (b) physics-based algorithms; (c) swarm-based algo- 

rithms; and (d) human-based algorithms. The evolution-based al- 

gorithm are inspired by the natural evolution rules, e.g., GA in- 

spired by Darwinian evolution [16] , biogeography-based optimiza- 

tion (BBO) inspired by the geographical distribution of biologi- 

cal species [17] . The physics-based algorithms are originated from 

the physical rules in the universe, e.g., gravitational search algo- 

rithm (GSA) derived from the law of Gravity and the notion of 

mass interactions [18] , big bang-big crunch (BB-BC) derived from 

the theory of the universe evolution [19] , ray optimization derived 

from the Snell’s light refraction law [20] . The swarm-based algo- 

rithms stem from the social behavior of groups of animals, e.g., 

ABC [9] , ACS [10] , and PSO [11] are inspired from the social behav- 

ior of bee colony, ant colony, and bird flocking, respectively. The 

human-based algorithms motivated by the human behaviors, e.g., 

teaching-learning-based optimization (TLBO) based on the philos- 

ophy of the teaching-learning process [21] , exchange market algo- 

rithm (EMA) based on the shares trading in the stock market [22] , 

group counselling optimizer (GCO) enlightened from the human 

social behaviour in solving social problems through counselling 

within a group [23] . Unfortunately, as most of these approaches is 

incapable of recording the prior knowledge, a relatively long com- 

putation time is resulted in when dealing with a new optimization 

task. Consequently, it is difficult to achieve a fast dynamic opti- 
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mization of a large-scale power system which optimization tasks 

may vary along with the time. 

Recently, transfer learning becomes more and more popular in 

data mining and machine learning due to its merits of fast res- 

olution of similar tasks via exploiting the prior knowledge [24] . 

It has been found that RL can increase the learning rate through 

a transfer learning [25 , 26] , thus AI and behaviour psychology in- 

spired transfer reinforcement learning (TRL) has been developed, 

which can be classified into a behaviour transfer and an infor- 

mation transfer [27] . In order to accelerate the learning rate of 

the reinforcement learning tasks, a right inter-task mapping was 

constructed for a transfer learning between a task and a different 

but relevant task with different actions and state variables [28] . 

Moreover, a novel transfer learning was proposed in [29] based 

on subgoal discovery and subtask similarity. In addition, a trans- 

fer method was presented in [30] which attempts to leverage the 

weights from function approximators specifying action-value func- 

tions via inter-task mapping method. Furthermore, the transfer was 

achieved based on the idea that related tasks usually share some 

common features [31] . In [32] , a generalized policy was proven to 

be a more effective approach to transfer learning compared to pol- 

icy library by experiment based. Besides, the knowledge transfer 

was also adopted to accelerate agent’s learning rate and coordina- 

tion ability for multiagent reinforcement learning by [33] . As one 

of the most famous RL, Q-learning [34] can also be used for the 

behaviour transfer, in which the Q-value table is defined as the 

memory matrix for the knowledge learning, storage, and transfer 

in this paper. However, it consumes a long time to obtain an op- 

timal memory matrix as only a single RL agent is activated for 

the state space exploration in the environment, which may even 

lead to the curse of dimension when solving a complex task [35] . 

To tackle this problem, this paper adopts a modified Q-learning 

[36] to achieve a higher learning rate of behaviour transfer via 

combining the conventional Q-learning with the win or learn fast 

policy hill-climbing (WoLF-PHC). Moreover, the use of cooperative 

learning of Ant-Q [37] attempts to accelerate the update of mem- 

ory matrix. 

Based on the optimization mechanism of existing AI algorithms, 

a novel fast optimization method with TRL called accelerating bio- 

inspired optimizer (ABO) is proposed, which has the following four 

advantages against to the existing AI algorithms as follows: 

• The bions can obtain knowledge through a consistent interac- 

tion with the external environment, in which the knowledge 

can be fully stored in the memory matrix and transferred to 

different optimization tasks. 

• The cooperating learning and WoLF-PHC can jointly improve 

the update efficiency of memory matrix, while the use of as- 

sociative memory can effectively avoid the curse of dimension- 

ality of RPO in a large-scale power system. 

• ABO with TRL can efficiently exploit the prior knowledge for 

online optimization according to the deviations of active power 

demand between source tasks and a new task. 

• Compared with the approximate ideal multi-objective solution 

Q( λ) (AIMS-Q( λ)) learning [38] , this paper focus on the con- 

vergence acceleration for complex tasks by introducing a mem- 

ory matrix, cooperating learning, WoLF-PHC, and TRL, respec- 

tively. In contrast, AIMS-Q( λ) is developed for multi-objective 

optimization by only combing the conventional Q( λ)-learning 

with the improved technique for order preference similar to an 

ideal solution (TOPSIS) method, which usually encounters a rel- 

atively low learning efficiency and the curse of dimension as its 

performance is completely depended on the conventional Q( λ)- 

learning. 

The remaining of this paper is organized as follows. 

Section 2 presents the basic principles of ABO. ABO with TRL 

Fig. 1. The principle of memory matrix used in Q-learning. 

for fast RPO is developed in Section 3 . Simulation results obtained 

on IEEE 118-bus system and IEEE 300-bus system are given in 

Section 4 . Finally, Section 5 concludes the paper. 

2. A ccelerating bio-inspired optimizer 

2.1. Memory matrix and TRL 

In this section, three main parts of ABO, including the mem- 

ory matrix, associative memory, and TRL, are introduced as fol- 

lows: (a) The memory matrix is established via persistent inter- 

actions between the bions and the environment, which is adopted 

for knowledge learning, storage, and transfer; (b) The associative 

memory is employed to effectively handle the curse of dimension 

by decomposing the extremely large-scale action set into multiple 

small-scale action set; and (c) TRL is adopted to realize the knowl- 

edge transfer. 

2.1.1. Bion with memory matrix 

A bion is an intelligent agent mimicking the cooperation of 

creatures in nature, which is proposed to achieve associative mem- 

ory, knowledge learning, storage, and transfer. Due to such promis- 

ing features, the bion has the ability of self-learning and knowl- 

edge learning in a dynamic environment compared with that of 

other popular swarm intelligence (SI) algorithms, i.e., ABC [9] , ACS 

[11] , and PSO [12] . 

The Q-value table is defined as the memory matrix of each bion 

illustrated in Fig. 1 , while each element of the memory matrix rep- 

resents a memory of the corresponding state-action pair, i.e., Q ( s,a ), 

which can be updated with the feedback reward from the inter- 

action between the bions and the environment [34] . The memory 

of each state-action pair is used to estimate the discounted sum 

of future rewards started from the current state and action pol- 

icy. Moreover, each bion specifies a stimulus-response pattern to 

select its action based on the memory matrix, such that the ex- 

pected long-term rewards in each state can be maximized. In a 

given state, a higher memory of the element indicates an action 

which tends to obtain a larger reward. After the bions undergo suf- 

ficient actions in the state space, an optimal memory matrix will 

be obtained and adopted for the knowledge transfer. 

2.1.2. Associative memory for dimension reduction 

It can be found from Fig. 2 that the curse of dimension will 

emerge if the number of controllable variables grows too large in 

conventional Q-learning. Assume the number of alternative actions 

for a controllable variable x i is m i , then the dimension of action 

set | A | = m 1 m 2 ���m n , where n is the number of controllable vari- 

ables. If n increases significantly, the dimension of the memory 

matrix will become extremely high, which inevitably results in a 

slow convergence or even a calculation failure. Currently, the hier- 

archical reinforcement learning (HRL) [39 , 40] , has been designed to 

avoid the curse of dimension via decomposing a complicated task 
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