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a b s t r a c t 

Influence maximization aims to find a set of highly influential nodes in a social network to maximize the 

spread of influence. Although the problem has been widely studied, it is still challenging to design algo- 

rithms to meet three requirements simultaneously, i.e., fast computation, guaranteed accuracy, and low 

memory consumption that scales well to a big network. Existing heuristic algorithms are scalable but suf- 

fer from unguaranteed accuracy. Greedy algorithms such as CELF [1] are accurate with theoretical guaran- 

tee but incur heavy simulation cost in calculating the influence spread. Moreover, static greedy algorithms 

are accurate and sufficiently fast, but they suffer extensive memory cost. In this paper, we present a new 

algorithm to enable greedy algorithms to perform well in big social network influence maximization. Our 

algorithm recursively estimates the influence spread using reachable probabilities from node to node. We 

provide three strategies that integrate memory cost and computing efficiency. Experiments demonstrate 

the high accuracy of our influence estimation. The proposed algorithm is more than 500 times faster than 

the CELF algorithm on four real world data sets. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Social networks [2] are of vital importance in information dif- 

fusion [3,4] and viral marketing [5,6] , especially when social media 

is combined with other entities, such as recommendation systems 

[7,8] , or business [9] . Influence maximization in social networks is 

defined as finding a subset (called seed set ) of nodes that can trig- 

ger the largest number of users propagating the given information. 

The problem can be formulated as a discrete optimization problem 

under the independent cascade model (IC) [10,11] and the linear 

threshold model (LT) [12] . It has been proved NP-hard, and thus 

many approximation algorithms and heuristic methods have been 

developed. 

Heuristic algorithms, such as DegreeDiscount [13] , PMIA [14] , 

IRIE [15] , and Group-PageRank [16] , are scalable in big networks 

but not robust with respect to network structures because they 

cannot guarantee theoretical accuracy. 

On the other hand, greedy algorithms [12] are usually favored 

for obtaining near-optimal solutions as they have theoretical guar- 
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antee due to the submodularity of the target influence function. 

However, conventional speed-up techniques, such as Cost-Effective 

Lazy Forward strategy (called CELF optimization) [1] , MixedGreedy 

[13] , CELF ++ [17] , UBLF [18] , are still not suitable for processing 

large-scale networks with millions of nodes because of their high 

time complexity and the unavoidable cost of simulating influence 

cascades. Thus, some static greedy algorithms, such as StaticGreedy 

[19] , pruned simulation strategy [20] and incremental strategy [21] , 

have been proposed. These methods drastically improve efficiency 

by using snapshots instead of simulating cascades, but they suf- 

fer from severe memory cost, which limits their application to big 

networks. 

In summary, all these methods still suffer from low scalability, 

low precision, or high memory cost. No related work has consider 

these three issues simultaneously. These issues mainly lie in the 

process of simulating the influence spread of any seed set, i.e., if 

the blackbox, or influence function, is known, the influence maxi- 

mization problem can be solved within linear time and O (1) space. 

In this paper, we focus on resolving the scalability, accuracy, 

and memory cost dilemma of influence maximization under the 

independent cascade model and propose a new efficient algorithm 

for the influence maximization problem through recursively esti- 

mating the influence spread. 

http://dx.doi.org/10.1016/j.knosys.2016.09.020 

0950-7051/© 2016 Elsevier B.V. All rights reserved. 
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Table 1 

Major variables used in the paper. 

Variables Descriptions 

G = (V, E) Social network G with node set V and edge set E 

n, m The number of nodes and edges respectively 

σ ( S ) The expected influence spread of seed set S 

P ( X ) The distribution of snapshot or instance X of G 

P a → v Node-to-node probability from node a to node v 

P S → v The probability of the event that v is reachable from S 

a + b Defined as the set of two merged nodes: { a } ∪ { b } 
N A positive truncation number 

P ( ·| a → b ) The probability of some event under the condition a → b 

μ A measure, i.e. a nonnegative countably additive function 

E ( f ) The expectation of random variable f 

∨ , ∧ The supremum and the infimum operator respectively 

The main contributions of our paper are: 

• We provide three strategies to obtain reachable probabilities 

from single node to single node ( node-to-node probabilities) by 

considering the scalability and memory cost simultaneously. 

• We reduce memory cost through keeping only O ( Nn ) node-to- 

node probabilities during node selection instead of R subgraphs, 

which occupy O ( Rm ) space, generated from the original net- 

work. N is a positive constant, m and n are the number of edges 

and nodes in the network and R is the number of simulations 

needed to estimate the influence spread. 

• We derive a recursive equation to estimate the influence spread 

of any given seed set and employ the estimation in each round 

of selecting a new influential node. 

• We successfully avoid revisiting generated subgraphs to com- 

pute the influence spread and reduce the time complexity of 

node selection from O ( kRmn ) to O ( kn 2 ) compared with previ- 

ous greedy algorithms, where k is the cardinality of the optimal 

seed set. 

Experimental results demonstrate that the proposed influence 

estimation method can achieve the comparable accuracy with all 

baseline greedy algorithms. More importantly, in terms of running 

time, our influence estimation approach performs more than 500 

times faster than CELF on four real world datasets. 

The rest of the paper is organized as follows. In Section 2 , 

related work for influence maximization is introduced. In 

Sections 3 and 4 , we derive our recursive estimation of the influ- 

ence spread given any seed set under the assumption that all the 

probabilities from node to node are already known. In Section 5 , 

three strategies are provided to obtain these probabilities, and in 

Section 6 we give an overview of our algorithm. In Section 7 , ex- 

perimental results on four real world datasets are presented. Lastly, 

we conclude the paper in Section 8 . Table 1 outlines the major 

symbols and variables used in the paper. 

2. Related work 

Many problems, such as viral marketing [5] or outbreak de- 

tection [1] , can be abstracted as an influence maximization prob- 

lem. After such abstraction, the corresponding problems can be 

dealt with from the perspective of designing fast and accurate al- 

gorithms. It was Domingos and Richardson [22] who first studied 

the problem of influence maximization from the algorithmic per- 

spective. Kempe et al. [12] subsequently formulated it as a discrete 

optimization problem. They proved that the optimization problem 

is NP-hard, and presented a greedy approximation algorithm (re- 

ferred to as GeneralGreedy in this paper) which guarantees that 

the influence spread is within 1 − 1 /e ≈ 63% of the optimal result. 

However, this greedy algorithm is inefficient and not scalable to 

large scale social networks because a large number of Monte–Carlo 

simulations are needed to estimate the expected influence spread 

of each seed set. 

Many studies devoted to optimizing Kempe’s greedy algorithm 

by reducing the number of simulations without lowering its 

solution quality were proposed as a result. The typical algorithm 

CELF [1] is 700 times faster, but it still takes a few hours for 

graphs with tens of thousands of nodes. The CELF algorithm was 

later upgraded to a CELF ++ strategy [17] , which simultaneously 

calculates the influence spread for two successive iterations of 

a greedy algorithm. The NewGreedy algorithm [13] reuses the 

results of Monte–Carlo simulations to estimate the influence 

spread for all candidate nodes in each round of choosing a new 

node to the seed nodes set. Integrating the advantages of both 

CELF and NewGreedy forms the MixedGreedy algorithm [13] . 

UBLF [18] drastically reduces the number of simulations in the 

first round of node selection by introducing an upper bound for 

every single node. However, these improved greedy algorithms 

are still inefficient, because they involve too many Monte–Carlo 

simulations for influence spread estimation. 

By reusing the subgraphs (called snapshots or instances [23] ) 

generated from the original network, static greedy algorithms re- 

duce the number of simulations by two orders of magnitude. Stat- 

icGreedy [19] has a speed comparable to some scalable heuris- 

tic algorithms, but it is still impractical for large-scale networks 

to keep these snapshots due to severe memory cost, as [20] has 

pointed out in their experiments. Ohsaka et al. [20] introduced 

Pruned BFS to accelerate the estimation of influence spread. The 

performance of Pruned BFS is better if there is a node whose de- 

gree is dominantly larger than that of others, which is not always 

the case; as stated in [24] , the degree distribution is usually heavy- 

tailed. Lu et al. [21] proposed an incremental strategy to deal with 

big networks by breaking down the original network into sub- 

graphs and generating simulations on the whole network by join- 

ing the results of subgraphs to estimate the influence spread. How- 

ever, it still suffers from the scalability, accuracy, and memory cost 

dilemma. 

Several heuristics for the independent cascade model have been 

proposed to avoid using Monte–Carlo simulations. Chen et al. 

[13] suggested a degree discount heuristic which significantly de- 

creases the running time by only considering the direct influence 

of a node to its one-hop neighbors. However, this method is re- 

stricted to the uniform independent cascade model and the prop- 

agation probability must be small enough. PMIA [14] introduces 

maximum influence paths to estimate the influence spread. Jung 

et al. [15] proposed the IRIE algorithm which formulates the influ- 

ence spread using simultaneous linear equations. 

Another method of designing heuristics considers the influence 

maximization problem as a ranking problem. Liu et al. [16] pro- 

posed a Group-PageRank strategy based on a similar idea to PageR- 

ank. Cheng et al. [25] suggested finding a self-consistent ranking 

starting with another heuristic method and named it IMRank. 

All the above-mentioned methods suffer from low scalability, 

low precision, or high memory cost issues, and these issues mainly 

occur in the process of simulating the influence spread of any seed 

set. If we want to obtain fast and accurate algorithms for the influ- 

ence maximization problem, we must first estimate the influence 

spread of any seed set efficiently. To this end, we first carry out the 

related preliminaries in Section 3 , and then introduce our method 

to estimate the influence spread in Section 4 . 

3. Preliminaries 

3.1. Notations and basic definitions 

For similarity, we let G = (V, E) be an undirected network with 

a node set V of size n and an edge set E of size m . We adopt the 
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