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a b s t r a c t 

In real world decision making problems, real numbers, random numbers, and interval numbers are of- 

ten used simultaneously to express the attribute values of alternatives. To solve these uncertain multi- 

attribute decision making problems, we propose a definition of interval number with probability dis- 

tribution (INPD). This definition gives a uniform form for real numbers, interval numbers, and random 

numbers. Under certain conditions, an INPD can degrade to one of the three number forms. We then 

propose three weighted operators that aggregate opinions expressed by INPD. Furthermore, we propose 

a new stochastic dominance degree (SDD) definition based on the idea of almost stochastic dominance 

to rank two INPD. The new definition overcomes defects in traditional stochastic dominance methods. It 

takes all stakeholders’ preferences into account and can measure both standard and almost SDDs. For real 

numbers and interval numbers, results derived from SDD are consistent with traditional methods. On this 

basis, a method using INPD weighted operators and SDD is proposed to solve uncertain multi-attribute 

decision making problems. Finally, three numerical examples are given to illustrate the applicability and 

effectiveness of the proposed method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Uncertain multi-attributes decision making (MADM) aims to 

find the most desirable solution from a set of feasible alterna- 

tives, where the information provided by decision makers (DMs) 

is usually uncertain due to the increasing complexity of the 

socio-economic environment, inherent restrictions of measuring 

technology, and the vagueness of human thinking. There are many 

uncertain MADM problems in real world situations. In these deci- 

sion making processes, DMs cannot estimate attribute values with 

exact numerical values, but usually use some uncertain method- 

ology [28] . Interval numbers and random numbers are usually 

used for measuring uncertainty. Interval numbers are suitable to 

measure the subjective uncertainty derived from the vague and 

subjective nature of human thinking [29] . While random numbers 

suit for the objective one derived from the complexity of object 

and the restriction of measuring technology [23] . Many methods 

have been developed to handle MADM problems using interval 

numbers or random numbers ( [2,3,7,10,24,26,30] ; [32] ). However, 

in some evaluation problems, real numbers, interval numbers, 
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and random numbers may be used simultaneously to express 

values of different attributes. Some evaluation data may have been 

collected from measuring instruments or a historical database and 

expressed using real and/or random numbers. In addition, experts 

may also be invited to evaluate some subjective attributes. Due 

to the vagueness of human thinking, these attribute values are 

generally expressed by an interval number. In such cases, methods 

using a single number form may be not applicable. 

One possible way to solve this problem is to translate the three 

forms of numbers into a uniform format. Real numbers can be con- 

sidered as a special form of an interval or random number. The 

key to problem solving is to find the relation between interval 

numbers and random numbers. The possibility degree method is 

a simple and effective method used to rank interval numbers ( [6] ; 

[11,25] ). The method assumes that an interval number is a uni- 

form distribution variable with closed interval support. In fact, 

most existing research regarding interval numbers is based on 

this assumption [20] . When additional information about the na- 

ture of the uncertainty is obtained, other distributions, such as 

normal distribution, can be used to describe the probability on 

the interval [1,18] . In practice, interval numbers are usually used 

to express a DM’s uncertain opinion and are considered as con- 

tinuous sets [19] . However, random numbers are generally con- 

sidered an extension of real numbers and numerical values. Our 
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new uniform format must contain characteristics of both types of 

numbers. 

In some situations, such as in group decisions, DMs are sim- 

ply agents of all the stakeholders. Decisions should be made based 

on the preferences of all stakeholders, not those of the agents. In 

such cases, the elicitation of a unique probability or utility function 

may be difficult and the validity of its use is questionable [27] . One 

well-regarded method for comparing two alternatives with uncer- 

tain utility information is through stochastic dominance (SD). The 

SD method for comparing two alternatives with uncertain infor- 

mation has many advantages. It takes the difference of the stake- 

holders’ utility function into account and compares the expected 

utility of alternatives in a pairwise manner, only making minimal 

assumptions regarding the utility function, and makes no assump- 

tion at all with respect to the particular probability distributions 

of returns [15] . However, there are certain obvious disadvantages 

of the method. First, SD rules are strong conditions. Sometimes, an 

SD relation between two alternatives does not exist [22] . Second, 

SD relations are qualitative rather than quantitative. The verifica- 

tion of SD relations is not sufficient to accept strict preferences if 

the alternatives differ insignificantly [17] . 

There have been many attempts by scholars to solve these 

problems. One potentially feasible solution is the relaxation of SD 

rules. Leshno and Levy [8] defined the concept of almost stochas- 

tic dominance (ASD). It is a form of SD which holds for most, but 

not all, of the utility functions in a given class. Some utility func- 

tions are deemed ‘extreme’ and it is assumed that they do not rep- 

resent the preferences of any real world stakeholder. Leshno and 

Levy [8] suggested that we should rule out such utility functions. 

On the other hand, some scholars considered the issues regarding 

the quantification of SD rules. Some alternate SDD definitions have 

been proposed ( [21,33] ). However, most definitions have no eco- 

nomic meaning; they are simply ratios of areas enclosed by cumu- 

lative distribution function curves. The results obtained by these 

methods may be dubious. Besides, methods that can measure both 

SD and ASD degrees are still scarce. 

In this paper, we first propose a definition and operators for 

interval numbers with probability distribution (INPD) ( Section 2 ). 

This is a uniform form definition for real numbers, interval num- 

bers, and random numbers. Under certain conditions, INPD can de- 

grade to the three different number forms. Three INPD weighted 

operators are also proposed based on various aggregation ideas 

for different decision circumstances. Then, the idea of SD is in- 

troduced to rank two INPDs ( Section 3 ). To overcome the defects 

of traditional SD rules, we propose a new SDD definition based 

on the idea of ASD. This definition can be used to measure de- 

grees of SD and ASD and has a clear economic meaning. For an 

alternative, its SDD is determined by its own performance and 

support from stakeholders. We then propose a method based on 

INPD weighted operators and SDD to solve uncertain MADM prob- 

lems ( Section 4 ). Furthermore, numerical examples and compara- 

tive analysis are shown in Section 5 . Finally, the paper is concluded 

in Section 6 . 

2. INPD basic concepts and aggregation operations 

Definition 1. Let ā = [ a l , a u ] = { x | a l ≤ x ≤ a u ; a l , a u ∈ R } , and f ( x ) 

be probability density functions on the range [ a l , a u ], where ∫ a u 
a l 

f (x ) dx = 1 , and ∀ x ∈ [ a l , a u ], f ( x ) � = 0; then, ( ̄a , f (x )) or ([ a l , 

a u ], f ( x )) is an interval number with probability distribution (INPD). 

Hereinafter, ˜ a is used to denote ( ̄a , f (x )) for brevity. 

In particular, when the closed interval [ a l , a u ] is extended to 

( −∞ , + ∞ ), its INPD degrades to a random number. When the 

distribution function f ( x ) has a uniform distribution, the INPD de- 

grades to an interval number. When a l =a u , the INPD degrades to 

a real number. The basic INPD operations are proposed as follow. 

To simplify the calculations, throughout this paper, let � = 

{ ̃ x | ̃ x = ([ x l , x u ] , f (x )) , x l ≤ x ≤ x u , x l , x u ∈ R } be the set of all INPD. 

Definition 2. Let ˜ a , ̃  b ∈ �, ̃  a = ([ a l , a u ] , f 1 ( x 1 )) , ̃  b = ([ b l , b u ] , 

f 2 ( x 2 )) , λ ∈ R and λ � = 0, then: 

˜ a � ˜ b = ([ a l + b l , a u + b u ] , f �(x )) (1) 

˜ a � ˜ b = ([ min ( a l b l , a l b u , a u b l , a u b u ) , 

max ( a l b l , a l b u , a u b l , a u b u )] , f �(x )) (2) 

λ · ˜ a = 

(
[ λa l , λa u ] , f 

(
x 

λ

))
(3) 

where f �(x ) = 

∫ ∫ 
x 1 ·x 2 = x f 12 ( x 1 , x 2 ) d x 1 d x 2 , f �(x ) = 

∫ ∫ 
x 1 + x 2 = x f 12 ( x 1 , 

x 2 ) d x 1 d x 2 ; f 12 ( x 1 , x 2 ) is the joint distribution of f 1 ( x 1 ) and 

f 2 ( x 2 ). When ˜ a and 

˜ b are independent, f �(x ) = 

∫ ∫ 
x 1 ·x 2 = x f 1 ( x 1 ) ·

f 2 ( x 2 ) d x 1 d x 2 , f �(x ) = 

∫ ∫ 
x 1 + x 2 = x f 1 ( x 1 ) · f 2 ( x 2 ) d x 1 d x 2 . In decisions, 

INPDs are used to express attribute values of alternatives given 

by different DMs. In such cases, the INPD are considered to be 

independent. In the rest of this paper, we assume INPDs are 

independent. 

In the above operations, an INPD is deemed to be an extension 

of a real number or a numerical value. However, in practice, IN- 

PDs can also be thought of as uncertain opinions given by DMs. 

In such cases, for an INPD ˜ x = ([ x l , x u ] , f (x )) , the interval [ x l , x u ] 

reflects the value range of x . The function f ( x ) describes the likeli- 

hood decided by the DMs for x to take on a given value. For a given 

value x 0 , different DMs may have different opinions. The common 

opinion should depend on their weights and their personal opin- 

ions. The other two operators are given as follows based on the 

weighted sum model: 

Definition 3. Let ˜ a , ̃  b ∈ �, ˜ a = ([ a l , a u ] , f 1 ( x 1 )) , ˜ b = ([ b l , b u ] , f 2 
( x 2 )) , α, β ∈ [0, 1] are the weights of ˜ a and 

˜ b ,with α+ β = 1, then: 

˜ a 
⋃ 

˜ b = 

(
[ a l , a u ] 

⋃ 

[ b l , b u ] , f ⋃ (x ) 
)

(4) 

˜ a 
⋂ 

˜ b = 

(
[ a l , a u ] 

⋂ 

[ b l , b u ] , f ⋂ (x ) 
)

(5) 

where f ∪ ( x ) = α · f 1 ( x ) + β · f 2 ( x ), 

f ⋂ (x ) = 

{ 

α · ε 1 · f 1 ( x 1 ) + β · ε 2 · f 2 ( x 2 ) [ a l , a u ] 
⋂ 

[ b l , b u ] � = ∅ 
0 [ a l , a u ] 

⋂ 

[ b l , b u ] = ∅ 

ε 1 = 

1 ∫ 
[ a l , a u ] 

⋂ 

[ b l , b u ] f 1 ( x 1 ) d x 1 
, ε 2 = 

1 ∫ 
[ a l , a u ] 

⋂ 

[ b l , b u ] f 2 ( x 2 ) d x 2 
. 

ε 1 , ε 2 are the conversion coefficients used to gather the DMs’ per- 

sonal opinion to the new intersection. 

From Definition 3 , it is easy to obtain the following properties: 

(1) ˜ a 
⋃ 

˜ a = ˜ a , ˜ a 
⋂ 

˜ a = ˜ a . 

(2) ∀ x 0 ∈ [ a l , a u ] ∪ [ b l , b u ], min ( f 1 ( x 0 ), f 2 ( x 0 )) ≤ f ∪ ( x 0 ) ≤ max ( f 1 ( x 0 ), 

f 2 ( x 0 )). 

(3) ∀ x 0 ∈ [ a l , a u ] ∩ [ b l , b u ], min ( ε 1 f 1 ( x 0 ), ε 2 f 2 ( x 0 )) ≤ f ∩ ( x 0 ) ≤
max ( ε 1 f 1 ( x 0 ), ε 2 f 2 ( x 0 )). 

(4) ˜ a 
⋃ ˜ b , ̃  a 

⋂ ˜ b ∈ �. 

Based on the above operators, this paper proposes three INPD 

weighted operators, which represent three different aggregation 

ideas respectively, compromise, consensus, and acceptance. 
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