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a  b  s  t  r  a  c  t

Energy  plays  a key  factor  in the  advancement  of  humanity.  As  energy  demands  are  mostly  met  by  fossil
fuels,  the  world-wide  consciousness  grows  about  their  negative  impact  on  the  environment.  Therefore,
it becomes  necessary  to design  sustainable  energy  systems  by  introducing  renewable  energies.  Because
of the intermittent  availability  of different  renewable  resources,  the  designing  of a sustainable  energy
system  should  find  an  optimal  mix  of different  resources.  However,  the  optimization  of  this  combination
has  to  deal  with  a number  of  possibly  contradictory  objectives.

Multi-objective  evolutionary  algorithms  (MOEA)  are  widely  used  to solve  this kind  of  problems.  As opti-
mizing  an  energy  system  by  using  a MOEA  is  computationally  costly,  it is  necessary  to  solve  the problem
efficiently.  For  this  purpose,  we propose  the  incorporation  of  domain  knowledge  related  to energy  sys-
tems into  different  phases  (i.e.,  initialization  and  mutation)  of  a MOEA  run.  The proposed  approaches  are
implemented  for two widely  used  MOEAs  and  evaluated  on the  Danish  Aalborg  test  problem.  The  exper-
imental  results  show  that  each  approach  individually  achieves  significant  improvements  of the  energy
systems,  which  is  expressed  in  better  trade-off  sets. Moreover,  a state-of-the-art  stopping  criterion  is
adapted  to detect  the  convergence  in order  to save  computational  resources.  Finally,  all  proposed  tech-
niques  are  merged  within  two  MOEAs  with  the  result  that  our combined  approaches  yield  significantly
better  results  in less  time  than  generic  approaches.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction
Q3

Most energy generated all over the world is based on fossil fuels
[1]. As energy generated by fossil fuels has harmful effects on the
environment, recent interest is directed towards the employment
of green or renewable sources to generate energy [2]. However,
due to their intermittent availability, it is not easy to integrate
renewable energy into a larger energy system [3].

In order to solve the integration problem, two  optimization
phases can be considered [4], i.e., (i) operational optimization and
(ii) capacity/sizing optimization. While the day-to-day operations
of resources of a given energy system are optimized in the first
phase, the second phase is mainly concerned with the design of
future energy scenarios to integrate renewable energies. For the
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first phase, many optimization models such as energy system sim-
ulation models are available (e.g., see the comprehensive review
article by Connolly et al. [5]). For the second phase, however, only
few attempts have been made when the considered energy sys-
tem consists of inter-connected sub-systems from electric, thermal
and transportation sectors [6]. Of the existing approaches, several
consider the optimization of the second phase as a multi-objective
optimization problem [7–9], where the different objectives can be
total cost, unmet load and fuel emission (i.e., CO2 emission) [8]. In this
article, we  focus on the optimization of energy systems in the sec-
ond phase. Capacity/sizing optimization is an active research topic
in the energy domain, where it is possible to leverage synergies
between different energy sub-systems [10].

The objectives of real-world problems can often be in conflict
with each other. The goal of solving a multi-objective optimiza-
tion (MOO) problem is to find a (not too large) set of compromise
solutions. The Pareto front of a MOO  problem consists of the func-
tion values representing the different trade-offs with respect to
the given objective functions. In practice, it is computationally
infeasible to compute the whole Pareto front, and MOO  problems
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Fig. 1. Energy system optimization model.

often can only be solved approximately by heuristic approaches.
Evolutionary algorithms have been widely used to tackle multi-
objective problems, and recently, efforts have been made to employ
multi-objective evolutionary algorithm (MOEA) to solve the prob-
lem of optimizing energy systems [11,12]. In addition, as the energy
system optimization problem we want to tackle is non-linear and
discontinuous in nature [10], we apply stochastic method such as
evolutionary algorithm instead of gradient-based methods (such as
used in [13]).

Fig. 1 presents our model for optimizing energy systems. The
upper part of the model illustrates the steps undertaken by clas-
sical MOEAs such as Non-dominated Sorting Genetic Algorithm
(NSGA-II) [14] and Strength Pareto Evolutionary Algorithm (SPEA2)
[15]. MOEAs are bio-inspired algorithms, which mimic  some fun-
damental aspects of the neo-Darwinian evolutionary process. They
simultaneously search with a population of candidate solutions and
associate objective scores as fitness values for each candidate solu-
tion. The algorithms then select among the population to favor
those solutions that are more fit. The next generation (i.e., a new
population) consists of replicates of the fitter solutions that have
been genetically mutated and crossed over in a biological metaphor:
the decision variables were perturbed such that they inherit char-
acters of their parents, as well as change in random ways. NSGA-II
and SPEA2 are nearly identical, but differ in the way  they rank solu-
tions within the set of trade-offs, and in the way the individuals for
next generations are selected.

The lower part of Fig. 1 shows our steps of evaluating indi-
viduals. The core component is the simulator for energy systems,
and Connolly et al. [5] provide a detailed review of different com-
puter tools for performing such simulations. The classification of
tools mainly depends on the simulated time step and the modeled
energy sub-systems. Time steps are important when modeling the
intermittent availability of renewable resources. There are several
simulation models that consider different time step sizes: HOMER
[16,17] for minutes, EnergyPLAN and H2RES [18,19] for hours, and
INFORSE [20] and LEAP [21] for years. However, very few mod-
els (e.g., EnergyPLAN, INFORSE) are capable of simulating different
levels of penetration of a renewable energy system (electricity,
thermal and transportation). We  choose EnergyPLAN because it is
freely available and it provides fairly detailed (i.e., hourly) analyses
of operations of different energy generating sources. It is capable of
simulating all the main inter-connected sub-systems of an energy
system. In addition, EnergyPLAN also optimizes the operations
of a given system (i.e., capacities of different power generations

components, demands, efficiencies, and other relevant data) and
produces annual indicators (e.g., total emission, primary energy
consumption, cost and others).

Generally, simulation models are computationally costly, there-
fore, we  want to optimize energy systems more efficiently. In
particular, we  want to achieve this by generating a high-quality
approximation of the Pareto front [22] at reduced computational
cost. To reach this goal, we investigate the incorporation of domain
knowledge related to energy systems into the different phases of
a MOEA. Firstly, we  propose a smart initialization technique and
secondly, incorporate a smart mutation [23]; both exploit domain
knowledge. Additionally, to detect convergence of the algorithm,
we apply the stopping criterion proposed by Mahbub et al. [24]
that has proven to work reliably when used in the optimization of
a real-world problem (i.e., energy system optimization problem).
This way  the MOEA stops when no improvements are achieved,
which saves computational resources that would otherwise be
wasted. We  integrate smart initialization, mutation and stopping
criterion into MOEAs to form informed MOEAs and compare them
with generic MOEAs. The results clearly show that all these individ-
ual methods work together and have an overall very good impact
on the optimization of an energy system. To the best of our knowl-
edge, this is the first attempt to incorporate energy system domain
knowledge into different operators of MOEAs.

In this study, we focus on the Danish Aalborg energy sys-
tem [25] to demonstrate the feasibility of our approach. It is a
well-understood problem, and the details are readily available.
It is important to note that more and more aspects have been
investigated in the recent past, giving rise to a large number
of optimization problems about renewable energy management
and electricity market operation. For instance, energy bidding and
reservation [26], economic dispatch [27] and microgrids manage-
ment [28] have been considered in the last few years. As our
proposed improvements are independent of the particular frame-
work used (i.e., as the approach is generic), we conjecture that they
can be applied to these problems as well to improve the outcomes.

The paper is organized as follows. Most of Section 2 discusses
how domain knowledge is represented and how it can be incorpo-
rated into a MOEA through problem-specific initialization. A brief
description of smart mutation and stopping criterion is presented
in Sections 2.3 and 3. We  present our test problem in Section 4.
Then, we  describe in Section 5 the details of all experiments and
the corresponding discussions of the results. Finally, we  draw our
conclusions in Section 6.

2. Incorporating domain knowledge

In general, a typical MOEA cannot perform well for all classes of
problems, as this would be contradictory to the No Free Lunch Theo-
rem [29]. According to this theorem, the average performance of an
algorithm over all possible classes of problems is constant. Hence,
the good performance of an optimization algorithm on one class
of problems is balanced out by the bad performance of the algo-
rithm on another class of problems. However, this also means that
problem-specific algorithms with above-average performance are
possible. Bonissone et al. [29] define two different ways to achieve
this by incorporating domain knowledge: implicitly and explicitly.
Encoding, design of data structures and constraints representation
are categorized as an implicit incorporation of domain knowledge.
Our article mainly focuses on the explicit incorporation (i.e., smart
seeding of initial population, mutation exploiting domain knowl-
edge) for the energy system optimization problem. In the following
sections, we will discuss how we  represent domain knowledge
of energy systems and how we incorporate this knowledge into
initialization and mutation.
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