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a b s t r a c t 

Insufficient volume of supervised information is a major challenge for supervised learning. An effective 

method to handle this problem is semi-supervised learning, which can make full use of the geometric 

information embedded in unlabeled instances. In this paper, we present a novel laplacian total margin 

support vector machine based on within-class scatter (LapWCS-TSVM) method to deal with the semi- 

supervised binary classification problem. The proposed LapWCS-TSVM incorporates the total margin al- 

gorithm and the manifold regularization into WCS-SVM to help improve its performance. With the help 

of kernel trick, the proposed LapWCS-TSVM can be easily generalized to non-linear separable case and 

solved by the optimization programming of the traditional support vector machine. Experiments con- 

ducted on artificial datasets, UCI datasets and face recognition datasets show the validity of the newly 

proposed algorithm. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, semi-supervised learning (SSL) which is a very 

important branch of machine learning has received considerable 

attention in many research areas [1–4] . One main reason is that 

the acquisition of labeled instances is usually difficult but the col- 

lection of unlabeled ones is much easier in many practical prob- 

lems. Different from the traditional supervised learning methods 

which need the label of each training instance, semi-supervised 

learning methods exploit abundant amounts of unlabeled training 

instances and rare labeled ones simultaneously with the objective 

to improve performance of classifiers. Therefore, the way how to 

use the information embedded in unlabeled instances effectively is 

the key to the formulation of a semi-supervised learning method. 

The manifold regularization [5,6] , which introduces a mean- 

ingful regularization term to encode the geometric information of 

the unlabeled instances and make the smoothness of the classi- 

fier along the intrinsic manifold, is one of the most elegant frame- 

works for the semi-supervised learning. Following the manifold 

regularization framework, a broad community of semi-supervised 

learning [7–12] has focussed on support vector machine, which 

has been extensively studied for supervised learning. Support vec- 

tor machine (SVM) [13,14] which has been successfully applied in 
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many pattern recognition problems due to its attractive features 

and wonderful practical performance [15–18] , is a promising su- 

pervised machine learning technique based on solid mathematical 

background. However, the performance of the supervised algorithm 

usually deteriorates because of the lacking of enough supervised 

information. By adding the manifold regularization term to the tra- 

ditional SVM, Belkin et al. proposed the laplacian support vector 

machine (LapSVM) [5] which took the underlying geometric infor- 

mation into full consideration to build a more reasonable classifier. 

As shown in previous researches [19–27] , the geometric infor- 

mation of instances is an important priori knowledge for classi- 

fiers. By incorporating the within-class scatter matrix in the tradi- 

tional SVMs, a lot of effective SVM-based algorithms [19–21] have 

been proposed. In addition, Arvanitidis et al. [22] utilized the geo- 

metric data information described in intrinsic graphs to introduce 

a novel classification framework that is based on the combination 

of the SVM and the graph embedding framework. Further, Iosifidis 

et al. [23] proposed a general multi-class classification framework 

by incorporating the geometric information of instances described 

in both intrinsic and penalty graphs in multi-class SVM. Also, the 

geometric information of instances was exploited to enhance the 

performance of ELM-based algorithms [24–27] . And the extreme 

learning machine (ELM) [28] is known as a fast and efficient algo- 

rithm for single-hidden layer feedforward neural(SLFN) networks 

training. It is notable that most of the mentioned algorithms are 

also supervised algorithms which only consider the labeled in- 

stances for their models training. Therefore, it may be beneficial 
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to introduce the algorithms in the framework of semi-supervised 

learning. 

In this paper, we mainly focus on the support vector machine 

based on minimum within-class scatter (WCS-SVM) [20] . Instead 

of the maximization of the margin between two classes, WCS-SVM 

focuses on the minimization of the within-class scatter and the 

maximization of the margin simultaneously, which provides sig- 

nificant advantages over the traditional SVM. Note that WCS-SVM 

is also a supervised algorithm which only exploits the labeled in- 

stances to train its model. In this paper, we try to introduce the 

algorithm WCS-SVM in the framework of semi-supervised learning. 

In addition, it is generally known that sparsity is a significant 

advantage for SVM. However, from the perspective of statistical, 

SVM suffers the disadvantage of the loss of information contained 

in the majority of training instances. WCS-SVM is a variant of the 

traditional SVM, so it suffers the same disadvantage. Intuitively, it 

is unavoidable that these algorithms are less efficient than those 

who take the lost information into consideration. To handle this 

problem, Yoon et al. proposed the total margin support vector 

machine (TM-SVM) which considers the distance between all in- 

stances and the separating hyperplane [29] . The total margin al- 

gorithm extends the soft margin algorithm by introducing surplus 

variables to the correctly classified samples. By maximizing surplus 

variables additionally, the generalization error bound of SVM can 

be further improved since all instances information is used to con- 

struct the separating hyperplane. Therefore, it may be beneficial to 

use the total margin algorithm to substitute the soft margin algo- 

rithm in WCS-SVM. 

In this paper, inspired by the studies above, we develop a semi- 

supervised learning algorithm by incorporating the manifold reg- 

ularization and the total margin algorithm into WCS-SVM. The 

newly proposed algorithm is termed as laplacian total margin sup- 

port vector machine based on within-class scatter or LapWCS- 

TSVM for short. By adding the manifold regularization term, the 

proposed LapWCS-TSVM can exploit the geometry information of 

the margin distribution embedded in unlabeled instances to con- 

struct a more reasonable classifier. Furthermore, our algorithm has 

the potential to obtain good generalization ability because it in- 

troduces the total margin algorithm to replace the soft margin al- 

gorithm in WCS-SVM. The proposed LapWCS-TSVM can be easily 

generalized to non-linear separable case by the well known “ker- 

nel trick” [14] and it is effortless to implement since it only re- 

quires, with the help of the Representer Theorem [5] , simple mod- 

ification of the optimization problem in the traditional SVM. Exper- 

iments results on artificial datasets, UCI datasets and face recogni- 

tion datasets are rendered to show the reliability and feasibility of 

our proposed LapWCS-TSVM. 

The remainder of this paper is organized as follows. We 

briefly review the related algorithms TM-SVM and WCS-SVM In 

Section 2 . In Section 3 , the manifold regularization is succinctly de- 

scribed and our proposed algorithm LapWCS-TSVM including linear 

and nonlinear cases are described in detail. Moreover, we com- 

pare our proposed LapWCS-TSVM with other related algorithms. 

Section 4 presents the experimental results. Finally, conclusions are 

drawn in Section 5 . 

2. Preliminaries 

In this section, we briefly review two related algorithms: the 

total margin support vector machine (TM-SVM) and the support 

vector machine based on within-class scatter (WCS-SVM). 

2.1. TM-SVM 

The total margin support vector machine (TM-SVM) [29] , which 

considers the distances between all instances and the separating 

hyperplane, has extended the existing soft margin algorithm. It 

aims to improve the generalization error bound of the traditional 

support vector machine through exploiting the surplus variables. 

Given the training set 

T l = { (x 1 , y 1 ) , . . . , (x l , y l ) } , (1) 

where x i ∈ R m is the input instance, y i ∈ { +1 , −1 } is the corre- 

sponding class label. Each instance is supposed to be classified 

by the hyperplane w 

T φ(x ) + b = 0 in the feature space, where w 

is the normal vector of the hyperplane, φ( ·) is a nonlinear map- 

ping function from the original low-dimensional input space into a 

high-dimensional feature space, b is the bias. 

By minimizing the sum of slack variables and maximizing the 

sum of surplus variables simultaneously, the optimization problem 

of TM-SVM can be formulated as 

min 

w,b,ξ ,δ

1 

2 

‖ w ‖ 

2 + C 1 e 
T ξ − C 1 (1 − β) e T δ

s . t . Y (Dw + eb) ≥ e − ξ + δ, 
ξ ≥ 0 e, δ ≥ 0 e, 

(2) 

where C 1 is the regularization parameter; β is constant meeting 

the condition 0 < β < 1, which can ensure that at least one of 

ξ i and δi becomes zero; ξ ∈ R l is the slack variable vector which 

measures the distance between the misclassified instances and the 

hyperplane; δ ∈ R l is the surplus variable vector which measures 

the distance between the correctly classified instances and the hy- 

perplane; Y ∈ R l × l is a diagonal matrix with diagonal elements 

Y ii = y i according to the class of the instance; e is the vector of 

ones of l dimension; D = [ φ(x 1 ) , . . . , φ(x l )] T . 

Using the kernel representation k ( ·, ·), we can obtain the fol- 

lowing dual of problem (2) : 

min 

α

1 

2 

αT Hα − e T α

s . t . e T Y α = 0 , 

C 1 (1 − β) e ≤ α ≤ C 1 e, 

(3) 

where α ∈ R l is the lagrange parameter vector; H = Y KY in which 

K ∈ R l × l is the Gram matrix with elements K i j = k (x i , x j ) , k is a 

suitable kernel function. As typical kernel functions, there are the 

linear kernel function, the polynomial kernel function (POLY) and 

the radial basis function kernel function (RBF). Later, the linear ker- 

nel (4) and RBF kernel (5) which have been confirmed superior to 

other kernels [30] will be used in our experiments: 

k (x i , x j ) = x T i x j , (4) 

k (x i , x j ) = exp (−σ‖ x i − x j ‖ 

2 ) , (5) 

where σ is the kernel parameter. 

The optimal bias b ∗ can be computed as 

b ∗ = 

1 

n 1 + n 2 

(
(n 1 − n 2 ) −

n 1 + n 2 ∑ 

j=1 

l ∑ 

i =1 

y i α
∗
i K(x i , x j ) 

)
, 

where α∗ is the optimal solution of the dual problem (3) ; n 1 is 

the number of x i with C 1 (1 − β) < α∗
i 

< C 1 and y i = +1 ; n 2 is the 

number of x i with C 1 (1 − β) < α∗
i 

< C 1 and y i = −1 . If n 1 = n 2 = 0 , 

then b ∗ = 0 . The final decision function of (2) can be given by 

f (x ) = sign 

(
l ∑ 

i =1 

y i α
∗
i k (x i , x ) + b ∗

)
. 

More details can be seen in [29] . 

2.2. WCS-SVM 

It is well known that the geometric information of instances is 

a very important priori knowledge for a classifier. By incorporat- 

ing minimum within-class scatter in Fisher Discriminant Analysis 
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