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a b s t r a c t 

Support vector regression (SVR), which has been successfully applied to a variety of real-world prob- 

lems, simultaneously minimizes the regularization error and empirical risk with a suitable penalty factor. 

However, it does not embed any prior information of data into the learning process. In this paper, by in- 

troducing a new term to seek a projection axis of data points, we present a novel projection SVR (PSVR) 

algorithm and its least squares version, i.e., least squares PSVR (LS-PSVR). The projection axis not only 

minimizes the variance of the projected points, but also maximizes the empirical correlation coefficient 

between the targets and the projected inputs. The finding of axis can be regarded as the structural infor- 

mation of data points, which makes the proposed algorithms be more robust than SVR. The experimental 

results on several datasets also confirm this conclusion. The idea in this work not only is helpful in un- 

derstanding the structural information of data, but also can be extended to other regression models. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past decade, due to the excellent generalization perfor- 

mance and structural risk minimization (SRM), support vector ma- 

chine (SVM) [4,5,26,32,33] , including support vector classification 

(SVC) [4,5,32,33] , support vector regression (SVR) [26,32,33] and 

the extensions [13,19] have become the useful tools for data clas- 

sification and regression, and have been successfully applied to a 

variety of real-world problems [10,17] . 

For classical SVR, it finds a function f ( x ) that has at most ε devi- 

ation from the actually obtained targets y i ’s for all training points, 

and, at the same time, is as flat as possible. In other words, it 

does not care about errors as long as they are less than ε, but will 

not accept any deviation larger than this. There exist many algo- 

rithms to learn SVR, such as the sequential minimal optimization 

(SMO) algorithm [24] and smooth algorithm [16] . Some researchers 

have also proposed a series of new models based on different loss 

functions, such as least squares SVR (LS-SVR) [28,29] and Huber 

loss based SVR [32,33] . Some other methods, including normal LS- 

SVR [21] , heuristic training [35] , and geometric methods [3] , etc., 

have been discussed. Recently, we have proposed a class of novel 

nonparallel-planes models for data regression in the spirit of the 

twin SVM classifier [13] , include twin SVR (TSVR) [19] and twin 

parametric insensitive SVR (TPISVR) models [20] . These models de- 

termine indirectly the regressor through a pair of nonparallel up- 

and down-bound functions solved by two smaller-sized SVM-type 
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problems, which make they not only have the faster learning speed 

in theory, but also obtain the comparable generalization perfor- 

mance with SVR. 

The generalization performance of classical SVR is obviously in- 

fluenced by the parameters. Fig. 1 gives a linear example to inter- 

pret this problem. For this example, it only needs to adjust the C 

value in linear SVR (3) given ε. It can be found that in Fig. 1 SVR 

obtains a poor performance given a small C value. Factually, the 

weight of regularization term in SVR, i.e., 1 
2 w 

T 
x w x = 

1 
2 || w x || 2 , will 

become small if C is small. Then, we have a small slope value for 

the regression line of this problem. To overcome this deficiency 

in classical SVR, one strategy is to choose a larger C value, but it 

may lead to the over-fitting phenomena for many real-world prob- 

lems. In fact, if one can embed the prior structure information of 

data into the regularization factor of SVR such that a small vari- 

ance value of the projected points on the normal vector direction 

can be obtained, this shortcoming will be easily overcome. On the 

other hand, the prior structure information of data is helpful in 

improving the performance of a regressor. 

In this paper, we present a novel SVR model for data regression, 

called the projection support vector regression (PSVR). Specifically, 

this PSVR is dedicated to generating a projection axis for the train- 

ing points, such that the projected points have as small as possible 

empirical variance value. In other words, it embeds the prior in- 

formation of data into the learning process by introducing a new 

term into its objective function. Thus, it can overcome the above 

shortcoming in the classical SVR. As the classical SVR, it also in- 

troduces the ε-insensitive loss function to depict the training er- 

ror, and introduces the l 2 -norm regularization term to avoid the 
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Fig. 1. Geometric interpretation for PSVR. 

possible over-fitting phenomenon, i.e., to make the function be as 

flat as possible. The benefits of PSVR can be described as follows: 

• Compared with the classical SVR, this PSVR inherits the merits 

of SVR by employing the ε-insensitive loss and the l 2 -norm reg- 

ularization, which makes the PSVR also have the sound theoret- 

ical foundation, i.e., the SRM principle. Further, the introduced 

projection axis in the PSVR makes the projected points have a 

small variance. Then, it leads the PSVR to obtain a better fit- 

ting on training points, see Fig. 1 . Meanwhile, this PSVR obtains 

the much stable results with different C values. For example, it 

can be found that this PSVR in Fig. 1 obtains the same results 

with different C values. In addition, the PSVR has less number 

of support vectors (SVs) than the classical SVR. Remark that, for 

SVM-type tools, the SV number is one of the most important 

measure to evaluate the performance and reflect the robustness 

[27,37] . Hence, this PSVR should have a better robustness than 

SVR. 

• The finding of projection axis in the PSVR can be regarded as 

the structural information of data points, see Xue et al.’s work 

[39] . Intuitively, this strategy leads to a good generalization per- 

formance since the structural information in data is embed- 

ded into the model. However, this structural information in our 

PSVR is not identical with that in Xue et al.’s work [39] since 

it not only embeds the structural information of input into the 

learning model, but also considers the structural information of 

target and the relationship between the input and target. That 

is, it maximizes the empirical correlation coefficient between 

the projected input points and their targets. This difference is 

much reasonable for regression since a regression function is to 

depict the relationship between the inputs and targets. 

In the spirit of the LS-SVR model, we extend this PSVR to a least 

squares version, i.e., the least squares PSVR (LS-PSVR). In terms of 

generalization, the experimental results indicate that this proposed 

PSVR obtains the better prediction performance with less number 

of SVs than the classical SVR and LS-PSVR. Also, the LS-PSVR ob- 

tains the better prediction performance than the SVR and LS-SVR. 

In addition, the experiments show that the PSVR is much less in- 

sensitive to the penalty factor than the SVR. 

There are many projection (or transformation)-based machine- 

learning algorithms [12] , such as the partial least squares regres- 

sion (PLSR) [31] and the orthogonal least squares (OLS) method 

[6] . It should be pointed out this PSVR is different with respect 

to them. For instance, instead of finding hyperplanes of minimum 

variance between the response and input variables, the PLSR finds 

a linear regression model by projecting the input variables and the 

response variables to a new space. The PLSR is particularly suited 

when the matrix of responses has more variables than inputs, and 

when there is multi-collinearity among input values. While the 

OLS method finds the regression by forward selecting variables. By 

contrast, standard regression will fail in these cases. 

The rest of this paper is organized as follows: Section 2 briefly 

introduces the classical SVR and LS-SVR. Section 3 presents the 

proposed PSVR and LS-PSVR. Furthermore, it gives some discussion 

on our methods and some other related methods. Experimental re- 

sults on benchmark datasets are given in Section 4 . Some conclu- 

sions and remarks are discussed in Section 5 . 

2. Background 

In this section, we first introduce briefly the classical SVR 

[26,32,33] and LS-SVR [28,29] , and then review some related work 

for this study. 

2.1. SVR & LS-SVR 

Without loss of generality, the training samples are denoted by 

a set D = { z i = (x i ; y i ) , i = 1 . . . , n } , where the inputs x i ∈ X ⊂ R 

m , 

the targets (or responses) y i ∈ R , i = 1 , . . . , n, and X denotes the 

space of the input patterns. 

As a state-of-the-art of machine-learning algorithm, the classi- 

cal SVR [26,32,33] finds a function f ( x ) that has at most ε devia- 

tion from the actually obtained targets y i ’s for all the training data, 

and, at the same time, is as flat as possible. In other words, it does 

not care about errors as long as they are less than ε, but will not 

accept any deviation larger than this. Specifically, the SVR finds a 

linear regression function f , taking the form 

f (x ) = w 

T 
x x + b, (1) 

tolerating a small error in fitting this given data set, where w x ∈ X 

and b ∈ R . Flatness in the case of (1) means that one seeks a 

small w x . One way to ensure this is to minimize its l 2 -norm, i.e., 

|| w x || 2 = w 

T 
x w x . We can write this problem as a convex optimiza- 

tion problem: 

min 

1 

2 

w 

T 
x w x 

s.t. y i −
(
w 

T 
x x i + b 

)
≤ ε, (

w 

T 
x x i + b 

)
− y i ≤ ε, ∀ i, (2) 

The tacit assumption in (2) is that such a function f actually exists 

that approximates all pairs ( x i ; y i ) with ε precision, or in other 

words, that the convex optimization problem is feasible. Some- 

times, however, this may not be the case, or we also may want 

to allow for some errors. For this aim, one can introduce slack 

variables ξ i , ξ
∗
i 

to deal with the infeasible constraints of the op- 

timization problem (2) . That is, we introduce the ε-insensitive loss 

function 

l ε (x , y, f ) = 

{ 

0 , if | y − f (x ) | ≤ ε, 

| y − f (x ) | − ε, otherwise , 

for the training points. Hence we arrive at the formulation shown 

in the follows: 

min 

1 

2 

w 

T 
x w x + 

C 

n 

n ∑ 

i =1 

(
ξi + ξ ∗

i 

)

s.t. y i −
(
w 

T 
x x i + b 

)
≤ ε + ξi , ξi ≥ 0 , (

w 

T 
x x i + b 

)
− y i ≤ ε + ξ ∗

i , ξ
∗
i ≥ 0 , ∀ i. (3) 
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