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a b s t r a c t 

In recent years, a variety of feature selection algorithms based on subspace learning have been proposed. 

However, such methods typically do not exploit information about the underlying geometry of the data. 

To overcome this shortcoming, we propose a novel algorithm called subspace learning-based graph reg- 

ularized feature selection (SGFS). SGFS builds on the feature selection framework of subspace learning, 

but extends it by incorporating the idea of graph regularization, in which a feature map is constructed 

on the feature space in order to preserve geometric structure information on the feature manifold. Ad- 

ditionally, the L 2,1 -norm is used to constrain the feature selection matrix to ensure the sparsity of the 

feature array and avoid trivial solutions. The resulting method can provide more accurate discrimination 

information for feature selection. We evaluate SGFS by comparing it against five other state-of-the-art al- 

gorithms from the literature, on twelve publicly available benchmark data sets. Empirical results suggest 

that SGFS is more effective than the other five feature selection algorithms. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The increasingly rapid growth of information technology has 

seen a corresponding growth in the number of dimensions of gath- 

ered data. In many high dimensional data sets, only a small sub- 

set of the available features are useful, with most features being 

redundant, and some features even corresponding to information- 

less noise [1–5] . To facilitate the subsequent processing, it is of- 

ten necessary to reduce the dimension of such high dimensional 

data. Processing of high dimensional data has become a challenge 

for researchers in many different fields [6–8] , including data min- 

ing, machine learning, pattern recognition and others. Dimension- 

ality reduction methods can broadly be categorized into methods 

for feature selection and feature extraction [9–13] . Feature selec- 

tion methods select representative features from the original set 

of features based on a variety of evaluation methods. In contrast, 

feature extraction methods map high dimensional data into a low 

dimensional space through a transformation matrix. Feature selec- 

tion methods select a subset of the original “raw” feature data, and 

so retain the physical or real-world meaning of the original data. 

This means that the performance of the resulting classifiers can of- 

ten be readily explained in terms of intuitively meaningful trends 

in the underlying data. In contrast, it may be difficult to explain 

the behaviour of feature extraction methods in terms of the rela- 
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tionship between the new feature and the sample class [1] . In this 

paper, we propose a new feature selection algorithm. 

Feature selection methods can broadly be divided into: su- 

pervised [2 , 14] , semi supervised [15] , unsupervised [16–18] . In 

supervised feature selection problems, the data discrimination in- 

formation and also the correlation between features and the class 

of each data sample is available during training. However, in order 

to obtain large amounts of such class information, need for train- 

ing such methods, a large amount of human resources are typically 

required, e.g. for hand annotation of data [18] . Semi-supervised 

feature selection requires only a smaller portion of the training 

data to be annotated with class label information to improve the 

accuracy of feature selection [15] . Unsupervised feature selection, 

without any class label information, only relies on the inherent 

information of the input data to determine the importance of 

features [16] . In many practical applications, the true class label 

information is unknown, which makes unsupervised feature selec- 

tion methods more widely applicable to real problems, but also 

engenders greater challenges for researchers. According to various 

possible search strategies, unsupervised feature selection can be 

divided into filter, wrapper and embedded [19–26] methods. 

In recent years, powerful new algorithms have been proposed 

which exploit the advantages of matrix decomposition techniques. 

Well known examples of such methods include nonnegative 

matrix factorization (NMF) [27 , 28] , principal component analysis 

(PCA) [29 , 30] and singular value decomposition (SVD) [30 , 31] . 

However, all of these are examples of feature extraction methods. 

A smaller body of literature has explored how the idea of matrix 

decomposition can also be applied to feature selection. Wang et al. 
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[32] proposed subspace learning for unsupervised feature selection 

via matrix factorization (MFFS). In [33] , Wang et al. proposed unsu- 

pervised feature selection via maximum projection and minimum 

redundancy (MPMR). These two algorithms find a suitable feature 

subspace through matrix decomposition, and the feature subspace 

is then used to represent the original feature space. By exploiting 

the advantages of the matrix factorization technique, MFFS and 

MPMR can both achieve good performance. However, MFFS and 

MPMR ignore the underlying geometry information of the data it- 

self. In contrast, this paper shows how such geometry information 

can be used to further improve the quality of feature selection. 

A variety of literature has shown that the distributions of high 

dimensional data are often sparse. Such data contain a lot of local 

information, which is important for mining the internal structure 

of such data and improving the performance of nonlinear learning 

34 , 35] . Some manifold learning algorithms have been proposed to 

discover the underlying manifold structure of data, such as Locality 

Preserving Projection [36] , local linear embedding (LLE) [37] and 

Laplacian Eigenmap [38] . By analyzing the manifold structure of 

the data set, we can use the underlying geometric information to 

improve the learning efficiency of the algorithm. 

Spectral graph theory [39 , 40] can be used to characterize the 

underlying manifold structure of the data. The spectral clustering 

method [39] exploits spectral graph theory to obtain good cluster- 

ing performance. Based on nonnegative matrix factorization (NMF) 

[28] , Cai et al. [41] proposed graph regularized nonnegative matrix 

factorization (GNMF), which uses the geometry information of the 

data itself to greatly improve performance. Compared with con- 

cept factorization (CF) [42] , locally consistent concept factorization 

(LCCF) [43] shows better performance, because it is able to exploit 

the local structure of data. In recent years, new work [44–46] has 

shown that the manifold information of the data is not only 

distributed in the data space, but also in the feature space. In [44] , 

Shang et al. proposed a graph dual regularization non-negative 

matrix factorization for co-clustering algorithm (DNMF). Ye et 

al. [46] proposed dual-graph regularized concept factorization 

clustering (GCF). 

Some classification algorithms also use the spectral graph 

theory. Belkin et al. [47] proposed manifold regularization, a 

geometric framework for learning from labeled and unlabeled 

examples, which uses graph theory to exploit the manifold struc- 

ture of the data. Experimental results show that this method can 

use unlabeled data effectively. Based on standard SVM, Chova et 

al. proposed semi-supervised image classification with Laplacian 

support vector machines (LapSVM) [48] , which uses the geometry 

information of both labeled and unlabeled samples by using 

the graph Laplacian. Some experimental evidence suggests that 

LapSVM can outperform conventional SVM. In [49] , Yang et al. 

proposed the Laplacian twin parametric-margin support vector 

machine for semi-supervised classification (LTPMSVM), which 

overcomes the shortcomings of conventional methods which are 

unable to effectively handle unlabeled data. LTPMSVM uses the 

geometric information of the unlabeled data to construct a better 

classifier, and experimental results have confirmed the strong 

performance of LTPMSVM. 

Some feature selection algorithms which use local structure 

information have previously been proposed. Laplacian score 

(LapScor) [21] , spectral feature selection (SPEC) [18] , minimum 

redundancy spectral feature selection (MRSF) [50] , unsupervised 

feature selection for multicluster data (MCFS) [51] are four 

well known algorithms. Extensions of MRSF and MCFS include 

clustering-guided sparse structural learning for unsupervised 

feature selection (CGSSL) [52] and joint embedding learning and 

sparse regression (JELSR) [53] . 

In this paper, we propose a new method called subspace 

learning-based graph regularized feature selection (SGFS). SGFS is 

based on the framework of subspace learning feature selection, 

which exploits the advantages of matrix factorization techniques. 

On this basis, we introduce the concept of graph regularization 

and preserve the local structure information of the feature space 

of the data. The local structure information of the feature space 

directly guides the learning of the coefficient matrix in the error 

reconstruction term, and indirectly guides the learning of the 

feature selection matrix. Additionally, we propose the use of the 

L 2,1 -norm to constrain the feature selection matrix, which guar- 

antees its sparsity, so as to provide more accurate discrimination 

information for feature selection. We use an alternating iterative 

optimization mechanism to optimize the objective function and 

adjust the parameters to minimize the reconstruction error. Finally, 

we obtain the feature selection matrix. Through this matrix, we 

can calculate the scores of all the features, and select the most 

representative features. 

The main contributions of this paper are as follows: 

1. By using graph theory, the geometric structure information of 

the feature manifold is preserved. Through the guidance of ge- 

ometry information, the learning of the feature selection matrix 

and coefficient matrix are more rapid and accurate. 

2. By introducing L 2,1 -norm to constrain the feature selection 

term, the sparsity of the feature selection matrix is guaranteed, 

enabling more accurate discrimination information for feature 

evaluation. 

The structure of this paper is organized as follows. In Section 2 , 

we introduce the framework, the iterative update rules and con- 

vergence proof of SGFS. In Section 3 , we present the experimental 

results of comparing the performance of SGFS against five other 

state-of-the-art algorithms on twelve public benchmark data sets. 

Section 4 provides concluding remarks. 

2. Subspace Learning-based graph regularized feature selection 

In this section, we present details of the SGFS method, which 

breaks down into three main parts: sparse subspace learning, local 

structure preserving and feature evaluation. 

2.1. Related notations 

First of all, we introduce some related notations. Denote X = 

[ x 1 , x 2 , ..., x n ] ∈ � 

d × n as the unlabeled sample data set. Where 

n and d respectively represent the number and dimension of the 

samples. We use l to indicate the number of selected features, l ≤
d . 

Given an arbitrary matrix A ∈ � 

e × f , its L r,s is defined as: 

‖ A ‖ r,s = 

( 

e ∑ 

i =1 

( 

f ∑ 

j=1 

| A i j | r 
) s/r ) 1 /s 

. (1) 

According to the definition, when r = s = 2, it indicates 

Frobenius-norm or L 2 -norm . In contrast, when r = 2, s = 1, it 

represents sparse constraint L 2,1 -norm . We denote L 2 -norm and 

L 2,1 -norm respectively as ‖ · ‖ 2 2 and ‖·‖ 2, 1 in the following. 

2.2. Sparse subspace learning 

2.2.1. Distance between subspaces 

According to [32] , we first define the distance between sub- 

spaces. Given a vector group X in an m -dimensional real number 

space. We define span ( X ) = { a T X | a ∈ � 

| X | } as the spanning sub- 

space of X , which is the set of all combinations of elements of X . 

Where, | X | is the basis of X . Given two vector groups X 1 and X 2 
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