
Knowledge-Based Systems 115 (2017) 40–54 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

A precise monadic dynamic slicing method 

Yingzhou Zhang 

a , b , c , ∗

a College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 
b Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China 
c Institute of Computer Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 

a r t i c l e i n f o 

Article history: 

Received 3 May 2015 

Revised 10 October 2016 

Accepted 13 October 2016 

Available online 22 October 2016 

Keywords: 

Dynamic slicing 

Modular monadic semantics 

Monads 

Monad transformers 

Parallel 

a b s t r a c t 

Dynamic program slicing is useful in software debugging, testing and maintenance, because it can extract 

more precise results than those obtained by static slicing. In this paper, we propose a precise approach 

for dynamic program slicing, monadic dynamic slicing , which is based on modular monadic semantics. 

Firstly, we abstract the computation of dynamic slicing as an object of independent language, dynamic 

slice-monad transformer . Then we discuss and illustrate a modular monadic dynamic slice algorithm in 

detail. In this monadic algorithm, dynamic slices are computed on abstract syntax directly, without the 

need to explicitly construct intermediate structures such as dependence graphs, or to record an execution 

history. Finally, we address the implementation and complexity analysis of this algorithm. We conclude 

that the monadic approach has excellent flexibility, combinability and parallelizability properties. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A program slice consists of the parts of a program that affect 

the values computed at some point of interest, referred to as a 

slicing criterion [43] . Program slicing can be divided into dynamic 

slicing and static slicing. A dynamic slice contains only those state- 

ments that actually affect the variables in a given slicing crite- 

rion for a given program input [1,13] , while static slicing does not 

take into account the program input. The applications of program 

slicing include program comprehension, program integration, soft- 

ware maintenance, debugging, testing, software measurement, re- 

verse engineering, and services computing [2,6,7,37,51–53] . In soft- 

ware testing and maintenance phases, dynamic slicing is preferable 

because it can extract smaller slices than those obtained by static 

slicing [4,34] . This paper focuses on dynamic slicing, although the 

methodology could also be applied to static slicers. 

Some dynamic slicing methods have been proposed in 

[1,13,24,25,33,36,44,45,57] , where the review and comparisons of 

such approaches were given as well. Most of them fall into two 

categories: backward and forward slicing. A backward slice consists 

of all statements of the program that can have some effect on the 

slicing criterion, whereas a forward slice contains those statements 

of the program that are affected by the slicing criterion. Backward 

slicing can assist a developer to locate the parts of the program 

which contain a bug. Forward slicing can be used to predict the 

∗ Correspondence to: College of Computer, Nanjing University of Posts and 

Telecommunications, Nanjing 210023, China. 

E-mail address: zhangyz@njupt.edu.cn 

parts of a program that will be affected by a modification. In for- 

ward dynamic slicing, introduced firstly by G. Tibor et al. [12,33,36] , 

the dynamic slices for each statement are computed immediately 

after the statement is executed. Once the last statement is exe- 

cuted, the dynamic slices of all statements executed have been ob- 

tained. Inspired by this idea, we will build dynamic slices on the 

semantics of programming languages. 

The main difficulty of dynamic slicing is to obtain the run time 

information. Most of the existing methods use relationship graphs 

or diagrams, and trace the execution of the program using an ex- 

ecution history. As a result, these methods require a fairly large 

amount of memory space to record the execution history, propor- 

tional to the program execution length. 

In addition, the existing slicing methods are incremental, se- 

quential, not combinatorial or not parallelizable easily for multi- 

core systems. However modern programming languages support 

modularized programming and programs often consist of a set of 

modules. So the program analysis should reflect this design tech- 

nology, and their methods (including program slicing) should be 

flexible, combinable, and parallelizable for improving the efficiency. 

As the behavior of a program is determined by the semantics 

of the programming language, it is reasonable to expect a dynamic 

slicing method based on the formal semantics of the programming 

language. On the basis of this view, this paper will give a formal 

approach for dynamic slicing, which is based on the formal se- 

mantics of programming languages. It can compute slices directly 

on abstract syntax, without explicit construction of intermediate 

structures such as dependence graphs, or a record for an execution 

history. 

http://dx.doi.org/10.1016/j.knosys.2016.10.013 

0950-7051/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.knosys.2016.10.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.10.013&domain=pdf
mailto:zhangyz@njupt.edu.cn
http://dx.doi.org/10.1016/j.knosys.2016.10.013


Y. Zhang / Knowledge-Based Systems 115 (2017) 40–54 41 

The paper has the following main contributions: 

• Monad technology gives our monadic algorithms for dynamic 

slicing the properties of flexibility and combinability. The re- 

designed dynamic-slice monad transformer provides the power 

to transformer a given monad (which represents a compu- 

tation) into a dynamic slice monad that contains both the 

dynamic-slice operations and those of the former monad. 

• The clear operational interpretation of the modular monadic 

semantics is ready for the feasibility and implementation of 

monadic slicing algorithms. The descriptions of our slicing al- 

gorithms are easily integrated in the modular monadic seman- 

tics of programs analyzed, so this readily allows us to formally 

prove that our monadic slicing results are precise. 

• The features such as arbitrary precision integer arithmetic, in- 

finite lists, powerful abstraction and lazy evaluation of the im- 

plementation language Haskell [31,35] will come in handy for 

our monadic slicing of programs with large execution history. 

What’s more, Haskell’s modern compiler GHC (Glasgow Haskell 

Compiler) makes our monadic slicer effective and parallelizable. 

The rest of the paper is organized as follows: In Section 2 , we 

briefly introduce the concepts of monads and monad transform- 

ers. Readers who are familiar with these concepts may skip this 

section. In Section 3 , the framework of modular monadic seman- 

tics is illustrated through a simple example language. The compu- 

tation of dynamic program slicing is abstracted using a dynamic 

slice-monad transformer in Section 4 . In Sections 5 and 6 , we dis- 

cuss and illustrate, in detail, our dynamic slicing algorithm basing 

on modular monadic semantics. In Section 7 , we address the im- 

plementation, the time and space complexity analysis, and the ex- 

perimental evidence of the effectiveness and parallelizability of our 

slicing algorithm. We in Section 8 talk over related work. We con- 

clude with Section 9 , which also gives directions for future work. 

2. Monads and monad transformers 

2.1. Monads 

Monads, originally coming from philosophy, were discovered 

in category theory in the 1950s and introduced to the semantics 

community by Moggi [20] in 1989. Later, Wadler [40,41] popu- 

larized Moggi’s ideas in the functional programming community. 

One of the distinguishing features of functional programming is 

the widespread use of combinators to construct programs [10] . A 

combinator is a function which builds a new program fragment 

from some existing ones. A programmer can use combinators to 

construct his/her desired program automatically, rather than writ- 

ing every detail by hand. A monad in a sense is a kind of standard- 

ized interface to an abstract data type of “program fragments”. The 

monad interface has been found to be suitable for combinator li- 

braries, and is now extensively used [10] . 

In the monad-based view of computation, a monad is a way 

to structure computations in terms of values and sequences of 

computations using those values [26] . The monad determines how 

combined computations form a new computation and frees the 

programmer from having to code the combination manually each 

time it is required. From this view, a monad can be thought as a 

strategy for combining computations into more complex computa- 

tions. 

In short, monads have three properties that make them espe- 

cially useful [26] . 1) Modularity : They allow computations to be 

composed from existing ones. 2) Flexibility : They extract the com- 

putational strategy into a single place instead of requiring it be dis- 

tributed throughout the entire program. 3) Isolation : They separate 

the combination strategy from the actual computations being per- 

formed. 

In Haskell [31,35] , which is a purely functional language with 

lazy evaluation, monads are implemented as a type constructor 

class with two member operations/functions (in the Prelude) 

class Monad m where 
return :: a → m a 

(�=) :: m a → (a → m b) → m b 

Here, return is the Haskell name for the unit and � = (pro- 

nounced “bind”) is the extension operation of the monad; the right 

arrow → denotes the type of a Haskell function. From the cate- 

gory theory of Haskell’s type system, the morphisms from types 

a to b are Haskell functions of type a → b . The above definition of 

the monad class means: a parameterized type m (which may be 

viewed as a function from types to types) is a monad if it sup- 

ports the two operations return and � = with the types given. 

Intuitively, for a type a , the type m a can be thought of as rep- 

resenting all computations that can return a result of type a (i.e., 

a program fragment). These computations are consistent under the 

concept of homomorphism in category theory. A monad (call it m ) 

therefore defines a type of computation. The nature of the compu- 

tation is captured by the choice of the type m . The return operation 

constructs a trivial computation that just renders its argument as 

its result. The � = operation combines two computations together 

to make more complex computations of that type. 

Using the combinator analogy, a monad m is a combinator that 

can apply to different values. m a is a combinator applying to a 

value of type a . The return operation puts a value into a monadic 

combinator. The � = operation takes the value from a monadic 

combinator and passes it to a function to produce a monadic com- 

binator containing a new value, possibly of a different type. The 

� = operation is known as "bind" because it binds the value in a 

monadic combinator to the first argument of an operation. 

To be a proper monadic combinators, the return and � = 

operations must work together according to some simple laws 

[20,40,41] . Monads laws state in essence that � = operation (se- 

quential composition) is associative, and return is its unit/identity. 

Failure to satisfy these laws will result in monads that do not 

behave properly and may cause subtle problems when using do- 

notation that will be explained later on. 

As an example, computations which may fail to return a result 

(or raise an exception), can be defined in Haskell as parameterized 

type Maybe . 

data Maybe a = Just a | Nothing 

Here, Maybe is a type constructor, Nothing and Just are data 

constructors. A value of type Maybe a is either of the form Just x , 

where x is a value of type a , or of the form Nothing . We can create 

a data value by applying the Just data constructor to a value: 

language :: Maybe String 
language = Just “English “

In the same way, we can construct a type by applying the 

Maybe type constructor to a type: 

lookupLang :: LangDB → String → Maybe String 

Now the lookupLang function which returns a result of type 

String, but may fail, can be defined to return a result of type 

Maybe String instead, where Nothing represents failure. Generally, 

the Maybe type suggests a strategy for combining computations 

which return Maybe values: if a combined computation consists 

of one computation B that depends on the result of another com- 

putation A, then the combined computation should yield Nothing 

whenever either A or B yield Nothing and the combined computa- 

tion should yield the result of B applied to the result of A when 

both computations succeed. 

On the other hand, this method has to propagate failures ex- 

plicitly; we have to test whether a failure occurred at each function 



Download English Version:

https://daneshyari.com/en/article/4946488

Download Persian Version:

https://daneshyari.com/article/4946488

Daneshyari.com

https://daneshyari.com/en/article/4946488
https://daneshyari.com/article/4946488
https://daneshyari.com

