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a b s t r a c t 

The dual problem of one-class support vector machine (OCSVM) can be interpreted as a minimum norm 

problem associated with the reduced convex hull. Based on this geometric interpretation, a generalized 

Mitchell-Dem’yanov-Malozemov (GMDM) algorithm is proposed for OCSVM. The GMDM algorithm finds 

the minimum norm point in the reduced convex hull of training samples and employs such a point to 

construct the separating hyper-plane. Numerical experiments are conducted to compare the proposed 

geometric algorithm with some existing algorithms such as two modified sequential minimal optimiza- 

tion algorithms and the generalized Gilbert algorithm. The experimental results show that the GMDM 

algorithm exhibits better performance in terms of computational efficiency while achieving comparable 

classification accuracies to other algorithms. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Over recent years, support vector machines (SVM) [1] have 

drawn a lot of attention. Some fruitful methods have also been de- 

veloped based on the standard SVM [2-5] . Originating from SVM, 

one-class support vector machine (OCSVM) was firstly proposed by 

Schölkopf et al. [6] to estimate the boundary of a high-dimensional 

distribution. The basic idea of OCSVM is to find the hyper-plane 

that separates training samples from the origin with the maximum 

margin. The decision boundary in the input feature, corresponding 

to the separating hyper-plane in the feature space, is regarded as 

the description of the sample distribution. OCSVM naturally inher- 

its the advantages of SVM, e.g., the utilization of the kernel trick, 

the robustness to outliers (achieved by adjusting a regularization 

parameter ν) and the sparseness of the solution. Over recent years, 

OCSVM has been successfully used in various one-class classifi- 

cation problems, such as computer image [7,8] , network security 

[9,10] and process monitoring [11] . 

By using the Lagrangian function, the optimization problem in 

OCSVM that really needs to be solved is not the primal maximum 

margin problem but its Lagrangian dual problem [6] . The dual 

problem is formulated as a quadratic programming (QP) problem, 

which can be solved by using standard algebraic QP algorithms. 

When dealing with large-scale datasets, however, OCSVM with a 
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standard algorithm will encounter the same computational prob- 

lem as SVM. The reason is that the standard algorithms generally 

have the cubic time complexity and at least the quadratic space 

complexity [12,13] . To reduce computational burden, Schölkopf et 

al. [6] introduced the well-known sequential minimal optimization 

(SMO) algorithm [12] to solve the dual problem in OCSVM. The 

SMO algorithm is a fast optimization algorithm initially proposed 

for SVM. On the one hand, the SMO algorithm breaks the original 

QP problem into a series of smallest possible QP sub-problems, 

and each one can be solved analytically in an efficient way 

since only two variables are involved in the sub-problem [12] . 

On the other hand, the SMO algorithm adopts a clever caching 

scheme, with only the linear space complexity [12] . By using these 

schemes, the SMO algorithm can often reduce the computational 

complexity of the original QP problem. Becuase of its higher 

computational efficiency relative to the standard algorithms, the 

SMO algorithm has become one of the most popular algebraic 

algorithms for OCSVM. Nevertheless, Keerthi et al. [14] pointed out 

an important source of inefficiency caused by the way that the 

SMO algorithm maintains and updates a single threshold value. 

Using clues from the Karush-Kuhn-Tucker (KKT) conditions of the 

dual problem, two threshold parameters are employed to derive 

two modified SMO algorithms that perform more efficiently than 

the original one [14] . The two modified algorithms are referred to 

as SMO-M1 and SMO-M2, respectively. 

From a geometric point of view, the dual problem in the soft 

margin OCSVM can be viewed as the nearest point problem (NPP) 

whose goal is to find the nearest point to the origin from the 
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reduced convex hull (RCH) of training samples [15] . As the dis- 

tance from the nearest point to the origin is exactly the norm of 

the nearest point (essentially a vector), the NPP is actually equiv- 

alent to the minimum norm problem (MNP) whose goal is to find 

the point with the minimum norm in the RCH of training sam- 

ples. In other words, the dual problem in the soft margin OCSVM 

can be interpreted as a Minimum Norm Problem associated with 

the Reduced Convex Hull (MNP-RCH). There are two classical al- 

gorithms to solve an MNP, namely the Gilbert algorithm [16] and 

the Mitchell-Dem’yanov-Malozemov (MDM) algorithm [17] . Both of 

them are iterative algorithms that approach the optimal minimum 

norm point iteratively. At each iteration, the Gilbert algorithm se- 

lects one sample point to update the current minimum norm point 

in the convex hull (CH) of training samples, while the MDM algo- 

rithm selects two. Therefore, it can be said that both of the two 

classical MNP algorithms are initially proposed to solve a Mini- 

mum Norm Problem associated with the Convex Hull (MNP-CH). 

The sample selection strategy either in the Gilbert algorithm or in 

the MDM algorithm guarantees that the new minimum norm point 

at each iteration is always a feasible solution to the MNP-CH. As 

for an MNP-RCH, however, such a guarantee cannot be given if the 

original sample selection strategy is still used. Consequently, the 

Gilbert algorithm and the MDM algorithm are not directly suitable 

for the soft margin OCSVM. One key step of the Gilbert algorithm 

is to locate the point (actually an extreme point of the CH of train- 

ing samples) with the minimum projection onto the direction of 

the current minimum norm point [15] . In an MNP-RCH, however, 

such a point is not simply a single sample point anymore, which 

leads to the difficulty of directly applying the Gilbert algorithm to 

the MNP-RCH. Recently, Zeng et al. [15] developed a generalized 

version of the Gilbert algorithm. Locating the minimum projection 

point using a linear combination of several specific sample points, 

the generalized Gilbert (GG) algorithm can directly handle the soft 

margin OCSVM. The numerical experiments suggest its potential 

superiority over the SMO algorithm in terms of computational ef- 

ficiency. 

In this paper, we focus on the generalized version of the MDM 

algorithm. We analyze the original update strategy in the MDM al- 

gorithm, and then develop a new one to ensure that the new min- 

imum norm point is always a feasible solution to an MNP-RCH. By 

incorporating this new update strategy into the MDM algorithm, a 

generalized Mitchell-Dem’yanov-Malozemov (GMDM) algorithm is 

proposed. The GMDM algorithm is essentially developed to solve 

an MNP-RCH. Thus, it can be directly applied to the soft margin 

OCSVM. Throughout the paper, we describe the GMDM algorithm 

in the form of its linear version, but all the comments made on 

the linear version are true for its corresponding kernel version. 

Common choices for the kernel function are Gaussian, polynomial 

and sigmoid kernels, etc. In this work, only the Gaussian kernel 

is considered. The Gaussian kernel is given in the form k ( x i , x j ) = 

〈 �( x i ) , �( x j ) 〉 = exp ( −‖ x i − x j ‖ 2 / 2 σ 2 ) , where σ is the Gaussian 

width parameter and �( · ) is the mapping function that maps 

samples from the input space X (generally the Euclidean space) to 

the feature space F (possibly a very high-dimensional space). 

The remaining part of the paper is organized as follows. Section 

2 reviews the concept of an MNP-RCH. The GMDM algorithm is 

proposed in Section 3 . In this section, the classical MDM algo- 

rithm is also introduced to promote a better understanding of the 

proposed algorithm. Section 4 gives numerical experiments and 

Section 5 concludes the paper. 

2. MNP-RCH 

Assume X = { x i } l i =1 
are training samples, where l is the number 

of training samples. Let I denote the index set {1, 2, ���, l }. The RCH 

of the sample set X can be written as 

RCH ( X , μ) = 

{ 

l ∑ 

i =1 

αi x i 

∣∣∣∣∣
l ∑ 

i =1 

αi = 1 , 0 ≤ αi ≤ μ

} 

(1) 

where αi ( i ∈ I ) are the combination coefficients and μ ∈ [1/ l , 1) is 

the reduction factor. Any point in the RCH can be definitely written 

in the above form. In the special case μ = 1 , the formula in Eq. 

(1) turns into the CH of the sample set X . 

The basic goal of an MNP-RCH is to find the point with the min- 

imum norm in the RCH of training samples. According to Eq. (1) , 

an MNP-RCH can be formulated as follows 

min 

α∈ R l 

∥∥∥∥∥
l ∑ 

i =1 

αi x i 

∥∥∥∥∥
s . t . 

l ∑ 

i =1 

αi = 1 , 0 ≤ αi ≤ μ, i = 1 , 2 , · · · , l (2) 

Square the objective function and multiply it by a constant 1/2, 

then generate an equivalent form of the MNP-RCH, i.e., 

min 

α∈ R l 
1 

2 

l ∑ 

i =1 

l ∑ 

j=1 

αi α j 

〈
x i , x j 

〉

s . t . 

l ∑ 

i =1 

αi = 1 , 0 ≤ αi ≤ μ, i = 1 , 2 , · · · , l (3) 

When the case μ = 1 / ( νl ) holds, the optimization problem in 

Eq. (3) is exactly the dual problem in the soft margin OCSVM. In 

other words, the dual problem can be actually interpreted as an 

MNP-RCH. The separating hyper-plane in the MNP-RCH can be con- 

structed by only using the optimal minimum norm point. More de- 

tails refer to [15] . Furthermore, it can be proved that this separat- 

ing hyper-plane is theoretically the same as the one that is con- 

structed in the primal soft margin OCSVM [15] . 

3. GMDM algorithm 

3.1. Review of the MDM algorithm 

Let w denote the minimum norm point in the CH of train- 

ing samples until current iteration. The current minimum norm 

point w is always known through the coefficients αi ( i ∈ I ), 

i.e., w = 

∑ 

i ∈ I αi x i . At each iteration, the classical MDM algorithm 

selects two sample points to update w [17] . One is the sam- 

ple point x A that has the minimum projection onto the direc- 

tion of w , and the other is the sample point x B ( αB > 0) that 

has the maximum projection onto the same direction. Define w̄ = 

w + αB ( x A − x B ) . The new minimum norm point w 

new is then 

chosen to be the point with the minimum norm on the line 

segment joining w and w̄ , i.e., w 

new = ( 1 − q ) w + q ̄w where q = 

min ( 1 , 〈 w , w − w̄ 〉 / ‖ w − w̄ ‖ 2 ) . The basic principle of the MDM al- 

gorithm is illustrated in Fig. 1. 

One key step of the MDM algorithm is to find the minimum 

projection point x A and the maximum projection point x B ( αB > 

0). This goal is achieved through scanning over inner products be- 

tween all the sample points x i ( i ∈ I ) and the current minimum 

norm point w . Clearly, either of x A and x B could always be an 

extreme point of the CH of training samples. The case 〈 w , x A 〉 −
〈 w , x B 〉 = 0 holds if and only if w reaches the theoretically optimal 

solution [18] . Note that the minimum projection point is also re- 

quired in the Gilbert algorithm [15] . Besides such a point, the MDM 

algorithm needs to find an extra maximum projection point that 

contributes to the representation of the current minimum norm 

point. 
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