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a b s t r a c t

Supervised learning algorithms in a spiking neural network either learn a spike-train pattern for a single
neuron receiving input spike-train from multiple input synapses or learn to output the first spike time
in a feedforward network setting. In this paper, we build upon spike-event based weight update strategy
to learn continuous spike-train in a spiking neural network with a hidden layer using a dead zone on–
off based adaptive learning rate rule which ensures convergence of the learning process in the sense of
weight convergence and robustness of the learning process to external disturbances. Based on different
benchmark problems, we compare this newmethod with other relevant spike-train learning algorithms.
The results show that the speed of learning is much improved and the rate of successful learning is also
greatly improved.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In Artificial Neural Networks (ANNs), we try tomimic the func-
tionality of natural brain with highly abstracted neuron models
and a high degree of interconnections between them to perform
useful tasks. Usually, the neuron model is abstracted using a non-
linear activation function. Spiking Neural Networks (SNNs) are less
abstract than these ANNs with non-linear activation functions in
the sense that they use spiking neurons as their computational
units. Spiking neurons process a series of spikes in time, termed
spike-train, as its inputs and produce a spike-train as its out-
put response. In nature, the biological neuron also uses similar
spike sequences to receive and transmit information between each
other. It is well-known that the currency of information exchange
in biological neurons is spike-train. However, how the spike train
encapsulates information is a subject of debate. There are two
schools of thought on it: rate encoding and pulse encoding. Tra-
ditionally it was understood that the instantaneous rate of spike
occurrence holds the totality of the information being transmitted
by a spike-train (Butts, Weng, Jin, Yeh, Lesica, Alonso, et al. (2007);
Maass (1997); Mainen and Sejnowski (1995); Rullen and Thorpe
(2001); Shadlen and Newsome (1994)). It is called rate encod-
ing. The numeric inputs and outputs in most of the ANNs used
nowadays are interpreted as instantaneous firing rate. Numerous
observations have been recorded in neuroscience, especially in the
visual cortex and auditory neurons, where the response of neurons
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along multiple layers of neurons is so swift that the firing rate
interpretation is implausible, thereby suggesting that the precise
time of spike carries a substantial amount of information (Butts
et al., 2007; Gollisch & Meister, 2008; Mainen & Sejnowski, 1995;
Rullen & Thorpe, 2001). This principle is called pulse encoding.
In fact, the current thinking in neuroscience is that rate coding
and pulse coding are two extremes. The brain network uses a
combination of both rate coding and pulse coding, depending upon
the situation (Kumar, Rotter, & Aertsen, 2010). The key point is
the use of spikes for information transfer, either at precise time
or firing at a certain rate or a mix of both. It suggests that SNNs
have the potential to process information in an efficient and rapid
manner.

SNNs find their applications in the field of neuroscience re-
search (Dethier, Gilja, Nuyujukian, Elassaad, Shenoy, & Boahen,
2011; Markram, 2006; Rom, Erel, Glikson, Lieberman, Rosenblum,
Binah, et al., 2007; Webb & Scutt, 2000). They have a promising
prospect as a general learningmachine aswell: theoretical analysis
shows that they are computationally at least as capable as a Multi-
Layer Perceptron (MLP) (Maass, 1996a,b, 1997; Paugam-Moisy
& Bohte, 2011). However, using an SNN as a learning machine
poses its set of challenges arising from the complex dynamics of
a spiking neuron and an additional time dimension to consider.
The supervised learning efforts can be broadly categorized into
two groups. First is SpikeProp (Bohte, Kok, & La Poutre, 2002)
and its derivatives viz. Adaptive SpikeProp (Shrestha & Song,
2013, 2015) Robust SpikeProp (Shrestha & Song, 2017a), Extended
SpikeProp (Schrauwen & Van Campenhout, 2004), SpikeProp
for multiple spiking neuron (Booij & tat Nguyen, 2005; Ghosh-
Dastidar & Adeli, 2009; Xu, Zeng, Han, & Yang, 2013), Resilient
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Propagation (RProp) (McKennoch, Liu, & Bushnell, 2006), etc.
These methods allow learning in a multilayer architecture. How-
ever, they are mostly limited to a single spike. The second group
consists of methods that train a single neuron to learn spike-
train patterns: Remote Supervised Method (ReSuMe) (Ponulak,
2005; Ponulak &Kasinski, 2009), Chronotron (Florian, 2007), Spike
Pattern Association Neuron (SPAN) (Mohemmed, Schliebs, Mat-
suda, & Kasabov, 2012, 2013), Tempotron (Gütig & Sompolinsky,
2006), Multi-spike Tempotron (Gütig, 2016), precise spike driven
synaptic plasticity rule (Yu, Tang, Tan, & Li, 2013), Linear Algebraic
Method (Carnell & Richardson, 2005), etc. Note that most of the
algorithms mentioned above learn to spike a specific spike train
pattern. Tempotron (Gütig & Sompolinsky, 2006), however, learns
to spike at least one spike or not spike at all. The exact time of
spike is not controlled in any way. Similar is the case for Multi-
spike Tempotron (Gütig, 2016),which learns to spike fixednumber
of spikes corresponding to an input pattern, but not the timing of
the spikes. ReSume has also been extended to learn in multilayer
architecture (Sporea & Grüning, 2013) using backpropagation rule
on the instantaneous firing rate of neurons. In the remainder of
this paper, wewill focus our attention towards supervised learning
methods that can learn spike-train patterns in a multilayer archi-
tecture.

For the learning spike-trains in a multilayer spiking neu-
ral network, there are multilayer extension of ReSuMe (Multi-
ReSuMe) (Sporea & Grüning, 2013) and multi-spike extensions
of SpikeProp viz. SpikeProp-Multi (Xu et al., 2013) and EvSpike-
Prop (Shrestha & Song, 2016). Multi-ReSume is independent of
the spiking neuron model which makes it versatile. However, it is
based on the assumption that the input spike-trains are linearly
transformed into output spike-train through linear interaction
with weights. In reality, there is a complex non-linear dynamic
relation between input spike-trains and the output spike-train
it is emitting. On the other hand, the multi-spike extensions of
SpikeProp consider the internal dynamics of a spiking neuron.
SpikeProp-Multi, however, assumes that the number of desired
spikes and the number of actual spikes that occurred in a sim-
ulation interval must be same. This condition cannot always be
guaranteed in practice. EvSpikeProp circumvents this issue using
event based weight update strategy. We will elaborate on the
event based weight update strategy in Section 3. Nevertheless,
EvSpikeProp faces the convergence and stability issues typical in
SpikeProp. In this paper, we will present a dead zone on–off based
adaptive learning rate for EvSpikeProp that will ensure conver-
gence and provide robustness against learning disturbances, be
it in the form of disturbance in desired spike sample or internal
disturbance due to modeling imperfection, and hence stability of
the learning process in L2 and L∞ space. Overall this approach to
stability and robustness is similar to our work on stability and
robustness of SpikeProp algorithm (Shrestha & Song, 2017a, b).
The main difference with SpikePropR (Shrestha & Song, 2017a) is
in the approach of error system analysis. In SpikePropR, we used
individual error system in whereas, we use overall total error of
the learning system in this paper similar to SpikePropRT (Shrestha
& Song, 2017b).

The remainder of the paper is organized as follows. We will
start with the preliminaries of spiking neuron model and the SNN
architecture in Section 2. Next, we will introduce event-based
weight update strategy and propose an adaptive learning rate
for EvSpikeProp using learning rate normalization which ensures
weight convergence and robustness to disturbances in Section 3.
Next, we will formulate the error system network for our new
learning method; followed by weight convergence analysis in the
presence of external disturbance; and extend the weight conver-
gence result to establish stability of normalized error signals in L2
space and show the boundedness of error signals in L∞ space in

Section 4. We will then compare the performance of our learn-
ing rule with existing methods in terms of different benchmark
problems in Section 5, followed by conclusion and notes on future
research direction in Section 6.

Notation: in this paper, matrices are denoted by upper case
boldface letters (e.g. Z); vectors are denoted by lower case boldface
letters (e.g. z); scalars are denoted by lower case letters (e.g. z);
and count of items is denoted by upper case letters (e.g. Z). Given
a matrix Z , we use zi: to denote the ith row, z:i to denote the ith
column and zij to denote the (i, j)th element. Given a vector z , we
use zi to denote the ith element. Sets are denoted by calligraphic
letters (e.g. G). The cardinal number of a set G is denoted by |G|. For
matrix–vector calculus, we use denominator layout convention.

2. Spiking neuron and SNNmodel

2.1. Spiking neuron model

In this paper, we will consider short term memory neuron
model (Paugam-Moisy & Bohte, 2011). It is a variant of Spike Re-
sponseModel (SRM) (Gerstner, 1995) inwhich refractory response
due to the most recent spike only. It is formally presented below.

Consider a neuron Nȷ́ which receives input spikes from a set
of presynaptic neurons, Γȷ́. Every input spike will induce a post
synaptic potential (PSP) through multiple synaptic connections
and the PSP at the kth synapse depends on the synaptic weightw(k)

ȷ́́ı

and synaptic delay d(k)ȷ́́ı . The most recent spike of Nȷ́ at t = t (f−1)

will produce refractory response as well. The cumulative effect of
all the PSP from input spikes and the refractory response form the
membrane potential of Nȷ́. Denote the firing times of presynaptic
neuron by Fı́ = {t (f )ı́ } : ı́ ∈ Γȷ́ ∧ t (f )ı́ + d(k)ȷ́́ı > t (f−1). Then the
membrane potential is given by

uȷ́(t) = ν(t − t (f−1)
ȷ́ ) +

∑
ı́∈Γȷ́

∑
t(f )ı́ ∈Fı́

∑
k

w
(k)
ȷ́́ı ε(t − t (f )ı́ − d(k)ȷ́́ı )

= ν(t − t (f−1)
ȷ́ ) +

∑
ı́∈Γȷ́

∑
k

w
(k)
ȷ́́ı y(k)ȷ́́ı (t, tı́) (1)

where y(k)ȷ́́ı (t, tı́) =

∑
t(f )ı́ ∈Fı́

ε(t − t (f )ı́ − d(k)ȷ́́ı ) (2)

is the normalized PSP due toNı́, ε(·) is the spike response kernel and
ν(·) is the refractory response kernel. The choice of spike response
kernel and refractory response kernel does not influence the anal-
ysis presented in this paper. For simulation results in Section 5, we
will use the following version of the kernels:

ε(s) =
s
τs
e1−

s
τs H(s), (3)

ν(s) = −ϑe−
s
τr H(s) (4)

where H(s) is the heaviside step function, τs is synaptic time
constant and τr is the refractory time constant.

Whenever the membrane potential uȷ́(t) rises up to a threshold
value ϑ , Nȷ́ emits a spike at t = t (f )ȷ́ i.e.

t (f )ȷ́ : uȷ́(t
(f )
ȷ́ ) = ϑ, u′

ȷ́(t
(f )
ȷ́ ) > 0, t (f )ȷ́ > t (f−1)

ȷ́ . (5)

For completeness, denote the function that maps membrane po-
tential of neuron to spike time as

t (f )ȷ́ = f (uȷ́) (6)

and fm(·) = [· · · , f (·), . . .]T ∈ R|F | (7)

denotes a function that maps membrane potential into a vector
consisting of all the multiple spikes.
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