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a b s t r a c t

The visual cortex is both extensive and intricate. Computational models are needed to clarify the
relationships between its local mechanisms and high-level functions. The Stabilized Supralinear Network
(SSN)model was recently shown to account formany receptive field phenomena in V1, and also to predict
subtle receptive field properties that were subsequently confirmed in vivo. In this study, we performed a
preliminary exploration of whether the SSN is suitable for incorporation into large, functional models
of the visual cortex, considering both its extensibility and computational tractability. First, whereas
the SSN receives abstract orientation signals as input, we extended it to receive images (through a
linear–nonlinear stage), and found that the extended version behaved similarly. Secondly, whereas the
SSN had previously been studied in a monocular context, we found that it could also reproduce data on
interocular transfer of surround suppression. Finally, we reformulated the SSN as a convolutional neural
network, and found that it scaled well on parallel hardware. These results provide additional support for
the plausibility of the SSN as a model of lateral interactions in V1, and suggest that the SSN is well suited
as a component of complex visionmodels. Future work will use the SSN to explore relationships between
local network interactions and sophisticated vision processes in large networks.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The visual cortex has an intricate organization at multiple
scales (Cossell et al., 2015; Harris & Mrsic-Flogel, 2013; Markov
et al., 2014) and performs many sophisticated functions. Due to
its complexity and nonlinearity, computational models are needed
to understand interactions between cellular mechanisms, network
interactions, and behaviour. However, it has been a challenge to
develop cortical models that combine physiological mechanisms
with non-trivial visual processing.

Convolutional neural networks (CNNs) are promising in this re-
spect. Their mechanisms are highly abstract, but they have a num-
ber of parallels with the cortex in both their structure (Goodfel-
low, Bengio, & Courville, 2016) and unit activity (Yamins et al.,
2014) (see also the Discussion). Importantly, they perform sophis-
ticated visual processing, including state-of-the-art object recogni-
tion (Szegedy et al., 2015), stereoscopic depth estimation (Žbontar
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& LeCun, 2016), segmentation (Chen et al., 2014), and detection of
grasp affordances (Lenz, Lee, & Saxena, 2013).

CNNs were invented in the late 1980s (LeCun et al., 1989),
and although they have advanced since then, their advances have
incorporated little from the last quarter century of neuroscience.
Conversely, models that address more recent data (e.g. Bednar,
2012; Mineault, Khawaja, Butts, & Pack, 2012; Rubin, Van
Hooser, & Miller, 2015) typically do not perform sophisticated
image processing (see Serre et al., 2005, for a counter-example).
Therefore, the relevance of recent advances in neuroscience to
complex, naturalistic vision has remained largely unaddressed in
computational models.

One of the key differences between convolutional networks and
the visual cortex is the predominance of recurrent connections in
the latter. This recurrence shapes the earliest responses (Somers,
Nelson, & Sur, 1995), though perhaps only subtly for simple
inputs (Li, Ibrahim, Liu, Zhang, & Tao, 2013). Recently, Miller and
colleagues (Ahmadian, Rubin, & Miller, 2013; Rubin et al., 2015)
developed the Stabilized Supralinear Network (SSN), a recurrent
model with balanced excitation and inhibition that accounts for
many receptive field properties (see details in the next section).

The present study is a preliminary exploration of the suitability
of the SSN for modelling recurrent connections in large, functional
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vision models. The SSN receives an abstract orientation field as
input, so we began by developing an extension of the SSN that
instead receives images as input, by adding an input stage of
linear–nonlinear receptive fields. We found that the extended
version behaved similarly to the original SSN. We then developed
a binocular extension of the model that incorporated ocular
dominance columns. We found that the SSN could reproduce data
on interocular transfer of surround suppression. These results
provide further support for the biological relevance of the SSN, and
its relevance to more complex information processing. Finally, we
implemented the SSN as a convolutional network, to determine
whether it could run at practical rates for image processing and
deep learning. We found that a large SSN model, with 20 million
excitatory units, could process an image in about ten seconds on
a single graphical processing unit (GPU). This suggests that it is
possible to incorporate the SSN into a large convolutional network,
but that it should be introduced at a late stage of training. Our
general conclusion is that the SSN can be used to incorporate
certain modern neuroscience results into highly functional vision
systems. This will facilitate future work in exploring the role of
lateral connections in a variety of visual processes.

2. The stabilized supralinear network

The stabilized supralinear network, or SSN (Rubin et al., 2015),
is a simple recurrent mechanism that accounts for a wide variety
of non-linear behaviour without requiring fine tuning of model
parameters. It is based on the following circuit properties:

Supralinear (power law) neuron output. All units in the SSN
output a power-law function of their input. This is supported by
the findings of Priebe, Mechler, Carandini, and Ferster (2004), who
found that V1 neurons have a power-law relationship between
average membrane potential and firing rate (see also Carandini,
2004; Miller & Troyer, 2002; Priebe & Ferster, 2008).

Recurrent connections with feedback. Neurons in the SSN are
sparsely and stochastically connected to one another. Combining
the supralinear input–output function of the units with intracorti-
cal excitation results in a rapid and indefinite rise in spike rate (for
strong enough inputs). Consistent with previous work (e.g. Mariño
et al., 2005; Murphy &Miller, 2009), the SSN proposes that this in-
stability is counteracted by simultaneous excitation of inhibitory
cells, which then inhibit the activity of both the excitatory and in-
hibitory units to a point of network stability.

Specific spatial properties of connections between neurons. In
the SSN, long-range connections are primarily excitatory, and
prefer to connect to inhibitory units. Inhibitory units connect to
both excitatory and inhibitory units over shorter distances. This
connectivity is consistent with anatomical data (Gilbert & Wiesel,
1989) and is critical to some of the SSN’s behaviour.

The model is meant to account for horizontal interactions in
layer 2/3. Each unit approximates a group of complex cells that
are selective for stimulus orientation. Input to the network is a
mathematical function of orientation and retinotopic position—the
SSN is not directly pixel-computable.

The SSN consists of a group of excitatory units, E, and a group
of inhibitory units, I . Each excitatory unit has a spatial location
(either in a ring or a two-dimensional grid, in different versions
of the model). Each unit also has an orientation preference. In the
two-dimensional version, a unit at two-dimensional grid position
x receives feedforward drive ch(θ(x)), where c is stimulus contrast,
h is an orientation-tuning curve and θ(x) is an orientation stimulus
at grid position x. There are both excitatory and inhibitory units at
each grid position.

The SSN model equations are as follows. Let x be a 2D vector
representing the retinotopic position in cortex of an E/I pair of
units, and c be the stimulus strength, which is taken to increase

monotonically with contrast. Wab is the connection weight from
a unit of type b to type a, where a and b can be either excitatory
(E) or inhibitory (I). h(x) is the orientation-selective feedforward
drive, with range 0 to 1, defined over all cortical positions in the
network’s grid. Input I to the excitatory and inhibitory units is as
follows:

IE(x) = ch(x) +


x′

(WEE(x, x′)rE(x′) + WEI(x, x′)rI(x′)) (1)

II(x) = ch(x) +


x′

(WIE(x, x′)rE(x′) + WII(x, x′)rI(x′)) (2)

where the sum over x′ ranges over all other unit positions. IE(x)
is the input to excitatory units, and II(x) is the input to inhibitory
units at position x. rE(x) and rI(x) are firing rates of E and I units at
position x.

The steady-state firing of a neuron for fixed input I is,

rSSE (x) = k([IE(x)]+)n (3)

rSSI (x) = k([II(x)]+)n (4)

where k is a constant gain, n is an exponent greater than 1, and [ ]+

indicates positive rectification.
Each unit’s output spike rate approaches the steady-state value

with first-order dynamics,

τE
drE(x, t)

dt
= −rE(x, t) + rSSE (x, t) (5)

τI
drI(x, t)

dt
= −rI(x, t) + rSSI (x, t). (6)

Eqs. (5) and (6) are then solved using Euler’s method with a
specified time discretization 1t and total steps T .

Connection weights Wab describe the connections between E
and I units at each position x. The connections are sparse and
computed probabilistically as the product of two Gaussians, one
a function of position and the other of orientation preference.
Specifically,

P(Wab(x, x′) ≠ 0) = κbGσab(x, x
′)Gσori(θ(x), θ(x′)) (7)

where θ(x) is the orientation preference, each Gσ (x, x′) = e
−|x−x′ |2

2σ2

is a Gaussian function, σab and σori determine how connection
density varies with differences in spatial position and orientation
preference, and κ is a scale factor (greater for I connections than
E connections). Thus a neuron is more likely to connect to nearby
neurons, and also more likely to connect to neurons with similar
orientation preference. Rubin et al. (2015) used a 75 × 75-point
grid. Their orientation map was generated using a method by
Kaschube et al. (2010). Non-zero weights were sampled from
normal distributions,

Wab(x, x′) = N(Jab, (0.25Jab)2) (8)

where Jab is the mean strength of connection weight from units
of type b to units of type a. Negative weights are set to zero.
Using these equations aswell as parameter values fromRubin et al.
(2015), we confirmed their major simulation results (not shown).
The parameter values are reproduced in Table 1.

2.1. Behaviour of the SSN

A major strength of the SSN model is its account for surround
interactions. Surround suppression, wherein stimuli outside a
neuron’s CRF suppress its response to stimuli within the CRF, has
been observed in cats and monkeys. When a stimulus extends
outside the classical receptive field of a neuron, it stimulates
surround neurons that have inhibitory connections to the central
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