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a  b  s  t  r  a  c  t

Teaching-Learning-Based-Optimization  (TLBO)  is  a population-based  Evolutionary  Algorithm  which  uses
an analogy  of  the  influence  of  a teacher  on the  output  of  learners  in a  class.  TLBO  has  been  reported  to
obtain  very  good  results  for many  constrained  and unconstrained  benchmark  functions  and  engineering
problems.  The  choice  for TLBO  by  many  researchers  is  partially  based  on  the study  of  TLBO’s  performance
on standard  benchmark  functions.  In this  paper,  we explore  the  performance  on  several  of  these  bench-
mark  functions,  which  reveals  an  inherent  origin  bias  within  the  Teacher  Phase  of  TLBO.  This  previously
unexplored  origin  bias  allows  the  TLBO  algorithm  to more  easily  solve  benchmark  functions  with  higher
success  rates  when  the  objective  function  has its  optimal  solution  as  the origin.  The  performance  on such
problems  must  be studied  to understand  the  performance  effects  of  the  origin  bias.  A  geometric  inter-
pretation  is  applied  to the  Teaching  and  Learning  Phases  of  TLBO.  From  this  interpretation,  the  spatial
convergence  of  the  population  is  described,  where  it is shown  that the  origin  bias  is  directly  tied  to  spatial
convergence  of the  population.  The  origin  bias  is  then  explored  by examining  the  performance  effect  due
to:  the  origin  location  within  the objective  function,  and the  rate  of  convergence.  It is  concluded  that,
although  the  algorithm  is  successful  in many  engineering  problems,  TLBO  does  indeed  have  an  origin
bias  affecting  the  population  convergence  and  success  rates  of objective  functions  with  origin  solutions.
This  paper  aims  to inform  researchers  using  TLBO  of  the  performance  effects  of the  origin  bias  and  the
importance  of discussing  its  effects  when  evaluating  TLBO.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

A new technique has risen in the field of global optimiza-
tion called Teaching-Learning-Based-Optimization (TLBO) [8,9].
The method is based on the philosophy of teaching and learning and
mimics the influence of a teacher on the output of learners. Unlike
many other global optimization algorithms, TLBO does not require
user-defined algorithm-specific control parameters (e.g., Genetic
Algorithms use a mutation rate, crossover rate and a few others).
Instead, these control parameters are probabilistically determined
during runtime and therefore tuning is not required in order to
improve performance. TLBO does however still require common
control parameters such as population size and number of gen-
erations; thus, it has been referred to as an algorithm-specific
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parameter-less method [7]. Proper tuning of the common control
parameters is still required to improve performance; however, the
burden of tuning these control parameters is comparatively less,
making TLBO a very desirable optimization method.

TLBO has been shown to attain comparatively good results
on many constrained and unconstrained benchmark functions
[1,9,16], multi-objective benchmark functions [11], and engineer-
ing problems [8,10,12,13]. It is shown to typically outperform many
global optimization algorithms, solving the same benchmark prob-
lems with fewer function evaluations, better solution, and higher
success rate [5–12]; thus TLBO has been shown to be an effec-
tive global optimization method. An interesting and insightful story
unfolds around TLBO, as discussed below, which shows the reper-
cussions that inexact experiment replications can have on the
conclusion of an algorithm’s performance, and alludes to the impor-
tance of being critical when evaluating an algorithm.

Rao et al. [9] originally conducted experiments on five sets of
non-linear unconstrained benchmark functions to evaluate TLBO’s
comparative performance with other Evolutionary Algorithms
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(EAs). The authors state that “the results show better performance of
[the] TLBO method over other nature-inspired optimization methods
for the considered benchmark functions”. In the note by Ĉrepinŝek
et al. [1], the authors reproduce these experiments using proto-
typical TLBO implementations from [8,9]. During their tests they
reveal several issues and misconceptions that appeared in the origi-
nal papers [8,9]. Most notably, that the five experiments conducted
with TLBO in [9] were not performed using similar experimental
settings for direct comparison to the results published using other
EAs. In response to this note, Waghmare [16] repeated these exper-
iments using the TLBO code from the appendix of [6] and argued
that their work presents “comparatively better results” to that of
[1]. Unfortunately, experiment 1 by Waghmare [16] is completed
using a population size of 10, as stated in their Table 8, whereas
Rao et al. [9] and Ĉrepinŝek et al. [1] (from their publicly avail-
able code) had used a population size of 20. Different results are to
be expected, thus experiment 1 in [16] is somewhat irrelevant for
comparison purposes. In addition to this, Ĉrepinŝek et al. [2] reiter-
ate that duplicate removal was used for all unconstrained problems
in [1], as was the case in [9], whereas [16] did not apply the tech-
nique. As well, Ĉrepinŝek et al. [2] reveal that the number of fitness
evaluations using the publicly available code in [6] is approximated
post-run and is not exact. Despite these differences, Ĉrepinŝek et al.
[2] provide statistical evidence that the “results are mostly insignif-
icantly different, despite Waghmare’s claim of significance”. During
our replication of these experiments, we had much difficulty trying
to reproduce the results of [16] using the same code obtained from
[6]; although, we did modify the code to accommodate a maximum
number of fitness evaluations, which may  explain the difference in
performance. In fact, our results were actually much closer to those
in [1].

1.1. Motivation

Being critical of an algorithm is very important when deciding
which EA to apply to a problem, as certain algorithms may  perform
much better on certain types of problems. As well, it can some-
times be difficult to find negative results in the literature, as most
researchers tend to focus on benefits rather than drawbacks of a
particular algorithm. For the intent of being critical, it is neces-
sary to gain a deeper understanding of how an algorithm works. To
better understand how TLBO works, a geometric interpretation is
applied in this work in order to explain the impact of the Teaching
Phase and Learning Phase on population convergence. Upon study-
ing the convergence of TLBO, the geometric interpretation reveals
a previously unexplored property of TLBO which introduces a bias
allowing for quicker convergence and higher success rates when
an objective function has an optimal solution at the origin, x* = 0
where x ∈ R

d and d is the dimension of the problem.
This bias, while not debilitating (noting the vast amounts of liter-

ature which successfully apply TLBO to real engineering problems),
is not accounted for in the conclusions of papers experimenting on
the affected problems. In fact, the only previous mention of such
a bias is made in the recent book [14], where the author briefly
notes that TLBO may  give an unfair advantage on problems whose
solution is at the origin. Several researchers have chosen to apply
TLBO to new problems following an initial test on standard bench-
mark functions, some affected by the origin bias, and noting that
the results are exceptional, such as in [17], while others reference
the original works in [9] stating that TLBO involves comparatively
less computational effort, such as in [11].

This paper offers unbiased data-based evidence that conclusions
for using TLBO are unjust without accounting for the origin bias
within TLBO. The goal of this paper is to provide an understanding
on the impact of the origin bias through geometric explanations,
code review of [1,6], and experiments. The source of the origin

bias is described by studying the convergence of TLBO, where the
exploratory portion of the algorithm is shown to cause the bias.
A detailed study considering the rate of convergence is presented
which offers an explanation of the relationship between conver-
gence and origin bias. As well, two modifications to the TLBO
algorithm are provided which can improve the results by either
removing or shifting the bias of the algorithm. These modifications
achieve the expected results, whereby the performance on many
problems is improved at the expense of additional function evalua-
tions for problems with origin solutions, with respect to the original
TLBO algorithm.

The rest of the paper is organized as follows. In Section 2 an
overview of the basic TLBO algorithm with accepted improvements
is presented. A geometric understanding applied to the Teaching
phase and Learning phase is presented in Section 3. In Section 4
TLBO convergence is discussed and the origin bias is explored.
Modifications are made to the TLBO algorithm in Section 5 to
remove or shift the bias and experimental results are provided for
a large set of benchmark functions. Finally, Section 6 concludes the
paper.

2. Teaching-Learning-Based-Optimization

2.1. Analogy

TLBO uses an analogy which is based on the effect of the influ-
ence of a teacher on the output of learners in a class [9]. The
job of a teacher is to teach the students such that each student
learns and is therefore able to improve their grades. A good teacher
is able to effectively improve the mean grade of the class. Rao
et al. [8] describe this transfer of knowledge as the movement of a
normally distributed set of grades. Outside of class, students also
interact and are able to exchange knowledge. As a result of these
interactions, the mean grade of the class is typically expected to
improve.

The analogy of subjects and grades is applied to the understand-
ing of TLBO. Students are enrolled in a number of different subjects,
equal to the number of design variables, d, associated with the prob-
lem. For each subject, the student earns a score, x, which represents
the value of a design variable. Depending on the combined scores
that a student receives in all of their subjects, x, they are assigned
an overall grade describing how well they have performed in com-
parison to the other students. Grades are computed by evaluating
the objective function using student scores for each subject, i.e.,  f(x).
Depending on whether the objective function is being minimized
or maximized, lower grades or higher grades represent better solu-
tions respectively.

The basic TLBO algorithm uses two distinct phases to perturb the
population towards better solutions. Subject scores are initialized,
such that the scores represent a uniformly distributed set of data
within the search space. Each student is evaluated to determine
their respective grade. A teacher is selected as the student with the
best grade and is then used to teach the remaining students. This
is accomplished in the Teacher Phase. Students are then randomly
paired and attempt to exchange knowledge with one another. This
is accomplished in the Learner Phase. These phases are expanded
on in the following subsections.

2.2. Teacher Phase

In the Teacher Phase, a teacher must be selected for each gener-
ation. This is accomplished by locating the best performing student
(i.e., the student with the lowest grade for a minimization prob-
lem). The teacher is then used to “teach” the remaining students
in an attempt to improve the mean grade. The following equation
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