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a b s t r a c t

In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent
to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is
obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-
feedback nonlinear systems with functional uncertainties, where an NN composite learning technique
is proposed to guarantee convergence of NN weights to their ideal values without the PE condition.
In the NN composite learning, spatially localized NN approximation is employed to handle functional
uncertainties, online historical data togetherwith instantaneous data are exploited to generate prediction
errors, and both tracking errors and prediction errors are employed to update NN weights. The influence
of NN approximation errors on the control performance is also clearly shown. The distinctive feature
of the proposed NN composite learning is that NN parameter convergence is guaranteed without the
requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness
and superiority of the proposed method compared with existing NN learning control methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the universal function approximation property of neural
networks (NNs), adaptive neural control (ANC) has been demon-
strated to be a powerful tool for handling functional uncer-
tainties in nonlinear systems (Narendra, 1996) and has kept
great attraction in recent years, e.g. see Chemachema (2012),
Esfandiari, Abdollahi, and Talebi (2015), Fairbank, Li, Fu, Alonso,
and Wunsch (2014), Hamdy and Hamdan (2015), Hamdy, Abd-
Elhaleem, and Fkirin (2017), Kiumarsi and Lewis (2015), Kostarigka
and Rovithakis (2012), Kruger, Schnetter, Placzek, and Vorsmann
(2012), Melingui, Lakhal, Daachi, Mbede, and Merzouki (2015),
Modares, Lewis, and Naghibi-Sistani (2013), Modares and Lewis
(2014), Pan, Yu, and Er (2014), Pan, Sun, and Yu (2015), Pan, Liu,
Xu, and Yu (2016), Pan, Gou, Li, and Yu (in press), Sahoo, Xu,
and Jagannathan (2016), Shojaei (2015) andTheodorakopoulos and
Rovithakis (2015). The most prominent benefit of applying NN
approximation is that the difficulty of system modeling in many
practical control problems can be greatly alleviated resulting in the
simplification of control synthesis (Narendra, 1996). By combining
with integrator backstepping, mismatched uncertainties can also
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be handled under the ANC framework (Pan, Liu, & Yu, 2015).
It is well known that integrator backstepping suffers from the
‘‘explosion of complexity’’ resulting from repeated derivations of
virtual control inputs (Pan & Yu, 2015). Dynamic surface control
(DSC) applies a first-order filter to the virtual control input at
each backstepping step to relax the limitation of the integrator
backstepping (Yip & Hedrick, 1998). However, it is still noise-
sensitive for using first-order filters to estimate time derivatives
of virtual control inputs. A solution of enhancing the DSC design is
to apply second-order commend filters instead of first-order filters
to estimate time derivatives of virtual control inputs, which leads
to a more practical command-filtered backstepping design (Dong,
Farrell, Polycarpou, Djapic, & Sharma, 2012; Farrell, Polycarpou,
Sharma, & Dong, 2009; Hu & Zhang, 2013).

A major limitation of most existing ANC approaches is that
the approximation ability of NNs is not fully exploited since only
tracking error convergence is obtainable in those approaches. A
sufficient condition for accurate NN approximation is that ad-
justable parameters in NNs converge to their ideal values, which is
guaranteed by a well-known persistent-excitation (PE) condition
(Kurdila, Narcowich, & Ward, 1995). The benefits of parameter
convergence in ANC include accurate online modeling, exponen-
tial tracking, and robust adaptation without parameter drift (Far-
rell, 1998). However, the PE condition in the traditional adaptive
control is very stringent and often infeasible in practice. A more
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practical PE condition based on NNs was established in Wang and
Hill (2006), where it is shown that for radial basis function (RBF)-
NNs constructed on a regular lattice, any recurrent trajectory of
NN inputs that stays within the regular lattice can lead to a partial
PE condition. An NN learning control (NNLC) method was also
developed in Wang and Hill (2006), where practical exponential
stability of the closed-loop system is established to ensure tracking
error convergence and accurate NN approximation within a local
region along recurrent trajectories. However, in this NNLC method
and its variations such as (Pan & Yu, 2017;Wang,Wang, & Liu, 2014;
Wang, Wang, Liu, & Hill, 2012), the requirement on the trajectory of
NN inputs being recurrent limits the applicable scope, and the high
dependence of the parameter convergence rate on the PE strength
results in a generally slow learning speed.How to relax the limitation
of existing NNLC methods is still an open question.

Composite adaptive control is an integrated direct and indirect
adaptive control strategy which aims to achieve higher track-
ing accuracy and better parameter convergence via faster and
smoother parameter adaptation (Slotine & Li, 1989). The supe-
rior performance of composite ANC has been verified in many
recent results, e.g. (Naso, Cupertino, & Turchiano, 2010; Pan, Sun,
& Yu, 2016; Pan, Zhou, Sun, & Er, 2013; Patre, Bhasin, Wilcox,
& Dixon, 2010). Yet, the PE condition still has to be satisfied
to guarantee NN parameter convergence in the composite ANC.
Composite learning is an emerging technique to achieve expo-
nential parameter convergence in adaptive control without the
PE condition (Pan, Er, Liu, Pan, & Yu, 2016; Pan & Yu, 2016; Pan,
Zhang, &Yu, 2016). In the composite learning, online historical data
(OHD) are employed together with instantaneous data to generate
prediction errors, both tracking errors and prediction errors are
applied to update parameter estimates, and exponential stability
of the closed-loop system, i.e. exponential convergence of both
tracking errors and parameter estimation errors, is guaranteed by
an interval-excitation (IE) conditionwhich significantly relaxes the
PE condition. In (Pan et al., 2016), a model reference composite
learning control approach was proposed for a class of nonlinear
systems with matched parametric uncertainties. In (Pan et al.,
2016), the approach of Pan et al. (2016) was extended to a class
of nonlinear systems with matched functional uncertainties via
fuzzy approximation. In (Pan & Yu, 2016), the approach of Pan et al.
(2016)was extended to a class of strict-feedbacknonlinear systems
with mismatched parametric uncertainties via command-filtered
backstepping.

Motivated by our previous composite learningworks (Pan et al.,
2016; Pan & Yu, 2016; Pan et al., 2016), this paper proposes an NN
composite learning control (NNCLC) strategy for a class of strict-
feedback nonlinear systems with functional uncertainties such
that NN parameter convergence is guaranteed without the PE con-
dition. The procedure of the control design is as follows: Firstly, a
command-filtered backsteppingANC law is proposed to govern the
controlled plant; secondly, spatially localized NN approximation
is applied to handle functional uncertainties; thirdly, a composite
learning law is developed to update NN weights; finally, practical
exponential stability of the closed-loop system is establishedunder
the IE condition and a proper choice of control parameters. The
silent feature of the proposed NNCLC is that it is able to achieve
fast convergence of NN weights to their ideal values without the
requirement on the trajectory of NN inputs being recurrent.

The rest of this paper is organized as follows: The control prob-
lem is formulated in Section 2; preliminaries are given in Section 3;
the NNCLC is designed in Section 4; an illustrative example is
provided in Section 5; conclusions are drawn in Section 6. Through-
out this paper, R, R+ and Rn denote the spaces of real numbers,
positive real numbers and real n-vectors, respectively, L∞ denotes
the space of bounded signals, ∥x∥ denotes the Euclidean norm of
x, min{·}, max{·} and sup{·} denote the minimum, maximum and
supremum operators, respectively, Ωc := {x|∥x∥ ≤ c} is the ball

of radius c , and Ck represents the space of functions for which all
k-order derivatives exist and are continuous,where c ∈R+, x ∈ Rn,
and n and k are positive integers.

2. Problem formulation

Consider a class of nth-order strict-feedback nonlinear systems
with functional uncertainties as follows:{
ẋi = fi(xi) + xi+1 (i = 1, 2, . . . , n − 1)
ẋn = fn(xn) + u (1)

in which u(t) ∈ R and x1(t) ∈ R are the control input and the
controlled output, respectively, xi(t) := [x1(t), x2(t), . . . , xi(t)]T ∈

Ri (x(t) = xn(t)) are the measurable state vectors, fi(xi) : Ri
↦→ R

are some unknown functions, and i = 1, 2, · · · , n. Let xd(t) ∈ R
be a desired output. The following assumptions are made for the
convenience of the control design (Farrell et al., 2009).

Assumption 1. fi(xi) are of C1 for i = 1, 2, · · · , n .

Assumption 2. xd(t) and ẋd(t) are continuous and of L∞.

Let αi(t) ∈ R and αc
i (t) ∈ R with i = 1, 2, . . . , n − 1 be

virtual control inputs and their filtered counterparts, respectively.
Define tracking errors ei(t) := xi(t) − αc

i−1(t) with αc
0(t) = xd(t)

for i = 1 to n . Let e(t) := [e1(t), e2(t), . . . en(t)]T , and xd(t) :=

[xd(t), ẋd(t)]T ∈ Ωcd ⊂ R2, where the existence of a finite cd ∈ R+

is guaranteed by the boundedness of xd and ẋd in Assumption 2.
According to (Farrell et al., 2009), a command-filtered backstep-

ping control law for the system (1) is given as follows:{
αi = −kciei + α̇c

i−1 − fi(xi) − vi−1
(i = 1, 2, . . . , n − 1)

u = −kcnen + α̇c
n−1 − fn(xn) − vn−1

(2)

with v0 = 0, where for i = 1, 2, . . . , n, kci ∈ R+ are control gain
parameters, vi(t) := ei(t) − ξi(t) are compensated tracking errors,
and ξi(t) ∈ R are compensating signals generated by

ξ̇i = −kciξi + ξi+1 − ξi−1 + α̃i (3)

with α̃i := αc
i − αi and ξ0 = ξn+1 = α̃n = 0. The terms αc

i and α̇c
i

in (2) are generated by a command filter (Farrell et al., 2009):{
ż1 = z2
ż2 = −2ςωz2 + ω2(αi − z1)

(4)

with z1(0) = αi(0), z2(0) = 0, αc
i = z1 and α̇c

i = z2, in which
ω ∈ R+ is a natural frequency, ς ∈ R+ is a damping ratio, and
i = 1, 2, . . . , n − 1.

The stability and convergence of the system (1) driven by the
control law composed of (2)–(4) have been established in Farrell et
al. (2009). However, the above control law is unrealizable as f1(x1)
to fn(xn) are unknown in this study. Therefore, it is necessary to use
NNs for the approximation of f1(x1) to fn(xn). The objective of this
study is to design a backstepping-based ANC law for the system
(1) such that convergence of both tracking errors and NN weights
is guaranteed under certain conditions.

3. Preliminaries

3.1. Radial-Basis-Function neural network

Let Ωcw ⊂ RN with cw ∈ R+. The RBF-NN can be represented
by (Farrell & Polycarpou, 2006)

f̂ (x, Ŵ ) = ΦT (x)Ŵ (5)

in which Ŵ = [ŵ1, ŵ2, . . . , ŵN ]
T

∈ Ωcw is an adjustable weight
vector,Φ(x) = [φ1(x), φ2(x), . . . , φN (x)]T ∈ RN is a regressor, N is
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