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a b s t r a c t

Recordings of neural network activity in vitro are increasingly being used to assess the development
of neural network activity and the effects of drugs, chemicals and disease states on neural network
function. The high-content nature of the data derived from such recordings can be used to infer effects of
compounds or disease states on a variety of important neural functions, including network synchrony.
Historically, synchrony of networks in vitro has been assessed either by determination of correlation
coefficients (e.g. Pearson’s correlation), by statistics estimated fromcross-correlation histograms between
pairs of active electrodes, and/or by pairwisemutual information and relatedmeasures. The present study
examines the application ofNormalizedMultiinformation (NMI) as a scalarmeasure of shared information
content in a multivariate network that is robust with respect to changes in network size. Theoretical
simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing
network relative to several alternative approaches. The NMI approach is applied to these simulations
and also to data collected during exposure of in vitro neural networks to neuroactive compounds during
the first 12 days in vitro, and compared to other common measures, including correlation coefficients
and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first
order synchronous and nonsynchronousmeasures of network complexity. Finally, NMI is a scalarmeasure
of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less
assumptions for cross-network comparisons than historical approaches.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recordings of electric potential over time from electrodes
embedded in neural tissues enable the observation of neural fir-
ing activity from neurons within a given proximity of each elec-
trode, depending on themanufacture (Obien, Deligkaris, Bullmann,
Bakkum, & Frey, 2015). While neural spiking is the underlying
mechanism that gives rise to broader functional activity like cor-
tical rhythms (Fries, Nikolić, & Singer, 2007; Wang, 2010), there is
also interest in the underlying information content of spiking pat-
terns via a variety of hypotheses of neural encoding (Kumar, Rotter,
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& Aertsen, 2010; Reyes, 2003; Rullen & Thorpe, 2001). Microelec-
trode arrays (MEAs) allow examination of neural spiking, bursting
and coordinated neural activity in cultures of neural tissues in
vitro (Nam & Wheeler, 2011; Pine, 2006). Examination of neural
network function using MEAs has been proposed as an approach
to evaluate the impacts of drugs, chemicals, and disease states
(Johnstone et al., 2010) on network development and function,
and the recent availability of multi-well MEA (mwMEA) formats
have facilitated such studies (Brown et al., 2016; Crossley et al.,
2014; Valdivia et al., 2014; Wainger et al., 2014; Woodard et al.,
2014). The focus of this work involves the inference of network
development effects resulting from chemical exposures, although
themethods formeasuring network properties described heremay
have broader applications. In particular, a new normalization of
Shannon mutual information (extended to multivariate networks)
is used to measure effects in growing neural networks.

In the MEA experimental paradigm, electric potentials are
recorded over time using extracellular electrodes positioned in
brain structures (in vivo) or embedded into a surface upon which
neural cells are cultured (in vitro). While the amplitude and shape
of individual action potentials can be assessed, most often the
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action potential spikes are reduced to time-stamps and analyzed
as spike trains on each individual electrode (or ‘‘units’’) if multiple
signals are observed on a single electrode. These spike trains can
then be compared across time and space (different electrodes) to
examine network characteristics. A variety ofmeasures of network
information may be extracted from spike train data derived from
MEA recordings that are indicative of network development and/or
function (Bove, Genta, Verreschi, & Grattarola, 1996; Brown et al.,
2016; Chiappalone, Bove, Vato, Tedesco, &Martinoia, 2006; Cotter-
ill et al., 2016). This includes measures that assess the synchrony
of activity in the network.

Synchrony is a useful concept that is associated with increas-
ing network complexity; however, measures and definitions of
synchrony differ widely in the literature. From the tissue-level
viewpoint of a large neural network, it is suggested synchronous
neural firing and associated potential oscillation is relevant to sen-
sory awareness (Engel & Singer, 2001), attention (Gregoriou, Gotts,
Zhou, &Desimone, 2009;Gross et al., 2004;Ward, Doesburg, Kitajo,
MacLean, & Roggeveen, 2006), memory (Jensen, Kaiser, & Lachaux,
2007; Palva, Monto, Kulashekhar, & Palva, 2010; Tallon-Baudry,
Bertrand, & Fischer, 2001) and other high level cognitive processes
(Buzsáki & Draguhn, 2004; Eckhorn, Reitboeck, Arndt, & Dicke,
1990; Engel, Fries, & Singer, 2001; Uhlhaas et al., 2009; Uhlhaas
& Singer, 2006). Synchronous activity is observed in both in vivo
and in vitro neural network recordings, and arises spontaneously
in networks grown in vitro, indicating that it is an intrinsic property
of neural networks, and as noted above, is important to neural
function. Thus, assessment of effects of neuroactive/neurotoxic
compounds or disease states on the development or maintenance
of synchrony is important.

Synchrony of signals at the tissue-level follows from the tempo-
ral coincidences in aggregated firing of many neurons, and is mea-
sured in terms of rate and phase by binning signals into temporal
and/or spatial windows. Temporal synchrony at the neural spiking
level is a lower level phenomenon, and while the classical view of
neural coding emphasizes rate synchrony, temporal synchrony of
the firing of individual neurons at a millisecond-level resolution
may drive both higher level synchronous behavior and associated
cognitive processes (Diesmann, Gewaltig, & Aertsen, 1999; Riehle,
Grün, Diesmann, & Aertsen, 1997). Some form of temporal syn-
chrony will arise as a result of temporally causal relationships
between the firing patterns of pairs of neurons, relationshipswhich
are integral to the study of synaptic interactions in the nervous
system (Bologna et al., 2010; Salinas & Sejnowski, 2001). Inferring
the developmental state of synaptic relationships between neu-
rons through temporal synchrony of their observed firing patterns
– and quantifying this synchrony – is one avenue for investigat-
ing developmental neurotoxicity bymaking comparisons between
populations of cultures under different experimental conditions.

A simplemeasure of synchrony between the binary spike trains
of two firing neurons is Pearson’s correlation coefficient, which
returns the cross-correlation between spike trains derived from
two neurons. The signal from a given neuron/electrode may be
time lagged relative to another at various time lag intervals to
return more general multi-dimensional cross-correlograms and
auto correlations when a single spike train is compared relative
to a time lagged version of itself (Knox, 1981; Rieke, Warland, van
Steveninck, & Bialek, 1996). There are theoretical deficiencies to
using linear correlation as ameasure of temporal neural synchrony
in pairwise interactions. First and foremost, linear correlation re-
lates little about the information content of a coincident binary
signal: two perfectly correlated neurons may fire once or one-
hundred times in a given time interval and the correlation coef-
ficient will be the same. Second, correlation is not well defined for
zero-valued signals, i.e. when no firing is observed by an electrode
embedded in a neural culture.

Shannon’s mutual information (MI) is a higher order infor-
mation theoretic measure of temporal synchrony that has been
used as a measure of information encoding in stimulus response
experiments (Bologna et al., 2010; Borst & Theunissen, 1999) in
the sense that MI depends on higher orders of the joint probability
distribution than linear correlation (Li, 1990). PairwiseMI accounts
for both linear correlation of two firing neurons and the shared
information content of the two spike trains, and hence represents
a more robust measure of temporal synchrony as a mechanism
of neural information coding. Other pairwise measures of tempo-
ral synchrony include transfer entropy (Gourévitch & Eggermont,
2007; Schreiber, 2000) and joint entropy (Garofalo, Nieus, Masso-
brio, & Martinoia, 2009) which are nonsymmetric measures that
allow for inference of directional causality in networks. Cutts and
Eglen (2014) review and benchmark a large number of pairwise
correlation measures. Measures of pairwise mutual information
are considered in their benchmarking but rejected as inconsistent
measures of linear correlation because of non-invariance with
respect to spiking rates (which is an attractive property of such
measures in the present case).

All of the described synchrony measures may be useful for
investigating the pairwise connections of a multi-node neural
network, from which connectivity properties between neurons
may be inferred. However, further assumptions and processing
on connectivity maps or the multivariate comparison structures
(cross-correlation and pairwise MI matrices, etc.) are required
if an experimenter desires a scalar measure of overall network
complexity in a network of neurons/electrodes with more than
two nodes. A scalar measure of neural network complexity that
does not rely on aggregating many pairwise temporal synchrony
measures would provide a more natural framework to make pop-
ulation comparisons between observed network activity in the
formofmulti-dimensional (e.g. recorded frommultiple electrodes)
spike trains recorded in neural cultures. MI has previously been
extended to the multivariate case of a multi-node network in at
least two different forms, which are described in detail below. The
hypothesis tested in this paper is that one of these multivariate
extensions to MI – when coupled with a novel normalization term
that is motivated by a self-consistency property of the function
– is useful as a scalar measure of the information content of a
developing neural network via simulations of binary spike train
recordings. The proposed normalizedmutual informationmeasure
is demonstrated (by examining concentration—responses in real
experiments) to be more sensitive than aggregated linear correla-
tion and other neural spiking parameters as a discriminant feature
for the effects of compounds on network function tested in vitro in
Sections 3 and 4.

In Section 2, the proposed function is shown to be justified in
the context of Shannon information theory as an asymptotically
consistent measure of shared information as connection strength
increases. Also in Section 2, bounding properties of the function are
stated and proved in the case of a network that is growing in size.

For the purposes of this study, mutual information measures
are applied to multichannel spike recordings without prior knowl-
edge of the generative neural network topology underlying those
recordings. The network is assumed to be (possibly) fully con-
nected (without self-connections), and all possible pairwise and
higher order interactions are considered. In practice there is some
topology to biological neural networks; in order to generate simu-
lations in 3 a series of feed-forward partially connected neural net-
works are generated that have directed connections. However, the
analyses on spike train recordings make no specific assumptions
about network topology.
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