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a b s t r a c t

A novel measure of neural spike train randomness, an entropy factor, is proposed. It is based on the
Shannon entropy of the number of spikes in a time window and can be seen as an analogy to the
Fano factor. Theoretical properties of the new measure are studied for equilibrium renewal processes
and further illustrated on gamma and inverse Gaussian probability distributions of interspike intervals.
Finally, the entropy factor is evaluated from the experimental records of spontaneous activity inmacaque
primary visual cortex and compared to its theoretical behavior deduced for the renewal process models.
Both theoretical and experimental results show substantial differences between the Fano and entropy
factors. Rather paradoxically, an increase in the variability of spike count is often accompanied by an
increase of its predictability, as evidenced by the entropy factor.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the most important questions in neuroscience is how
information is transferred in the nervous system. Some aspects of
the mechanism are clear and generally accepted—information is
transferred using spikes transmitted by neurons, coded only by
times of their occurrence, not by their size or shape (Gerstner
& Kistler, 2002; Rieke, Warl, de Ruyter van Steveninck, & Bialek,
1999). However, more specific details of the mechanism are not
obvious, mainly the exact method of coding. The simplest, and
most often assumed concept, is that coding is achieved through
the spike rate (defined, for example, as the number of spikes fired
in a unit of time), called the rate coding. It is a natural idea, as
neuronal responses are usually strongly influenced by the presy-
naptic spiking rate. Nevertheless, the rate reflects only a small part
of the character of spike trains and thus a possibility exists that a
more complex coding is employed. The codes which assume some
rate-independent behavior, given by the specific position of single
spikes, are called temporal codes (temporal coding).

There are many possibilities how such a temporal code could
operate,with one variant focusing on the variability in spike timing
(variability coding). Under this concept, information is transferred
not only by the rate, but also using the variability of spike trains.
The crucial question while studying the variability is how to quan-
tify it. The two of the most often used measures are the coefficient
of variation (CV) and the Fano factor, see (Ditlevsen& Lansky, 2011;
Rajdl & Lansky, 2014; Stevenson, 2016) andother referenceswithin
these texts. The CV is defined as the standard deviation to mean of
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interspike intervals (ISIs) ratio and the Fano factor is defined as the
variance to mean of number of spikes in a time window ratio. The
number of experimental studies where these two measures have
been applied is practically countless. The definitions of CV and the
Fano factor also show twomainways how to see neuronal data—as
ISIs or numbers of spikes in a time window of fixed length. A real
neuron more likely registers the counts of spikes than the exact
lengths of ISIs, nevertheless, both of these variants are useful and
provide a different perspective in evaluation of experimental data.
Another feature of these two variabilitymeasures, up to our knowl-
edge never mentioned, is that they can be seen as variance (of ISIs
or counts) related to a corresponding variance of a Poisson process
with the same firing intensity. As a Poisson process has a unique
position among the random processes used to model spike trains,
it is an important property of these measures that increases their
interpretability. Althoughwe consider CV and Fano factor to be the
most common variability measures, let us note that several others
have been proposed and studied. Among others, we may mention
CV2 proposed byHolt, Softky, Koch, andDouglas (1996), CVlog em-
ployed in Ruigrok, Hensbroek, and Simpson (2011) or coefficient
of local variation, Lv, introduced by Shinomoto and his coworkers
(Aoki, Takaguchi, Kobayashi, & Lambiotte, 2016; Shimokawa &
Shinomoto, 2009; Shinomoto, Miura, & Koyama, 2005). For com-
parison of various measures in classification of neuronal discharge
patterns, see Kumbhare and Baron (2015). Generally, as seen, there
are various ways of quantifying the statistical heterogeneity of a
given probability law, not only variance or entropy. Among others
belong the Gini index, which measures the law’s egalitarianism
or its alternative—the Pietra index (Eliazar & Sokolov, 2010). This
latter measure is especially useful in the case of asymmetric and
skewed probability laws and its future applications on neuronal
data remain open.
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Fig. 1. An overview of selected measures of intensity independent behavior of spike trains. (a) Twomain ways how to describe spike trains—using ISIs or counts of spikes in
a time window of length w. (b) Two concepts how to understand variability and randomness. (c) Specific characteristics representing variability and randomness—variance
and (Shannon) entropy. (d) Relating of given characteristics to a Poisson process of the same intensity. (e) Resultingmeasures—coefficient of variation (CV), Kullback–Leibler
distance (KL), Fano factor (FF) and entropy factor (HF).

Although the variability is commonly used as a general term,
there is a similar concept, but not equivalent one, which should
be distinguished—the randomness or predictability. Both, the vari-
ability and randomness describe the character of spike trains
which is not fully determined by the intensity, but there is a clear
difference between them. It can be seen, for example, from the fact
that even a variable process can be non-random. A very suitable
quantity to measure randomness is Shannon entropy (Shannon &
Weaver, 1998), which has been widely applied in neuroscience
(amongmany others, Borst andHaag (2001); Chacron, Longtin, and
Maler (2001); Ince et al. (2010); Kostal, Lansky, andRospars (2007);
McDonnell, Ikeda, andManton (2011); Steuer et al. (2001); Strong,
Koberle, de Ruyter van Steveninck, and Bialek (1998); Watters and
Reeke (2014)). Some randomnessmeasures based on entropy have
been proposed in neural context and thoroughly studied (Kostal &
Lansky, 2006; Kostal, Lansky, & Pokora, 2011; Kostal et al., 2007).
Nevertheless, they focus only on ISIs, creating an alternative to CV.
Themost suitablewayofmeasuring the randomness of ISIs appears
to be through using the Kullback–Leibler (KL) distance of probabil-
ity density of ISIs to density of ISIs in a Poisson process with the
same intensity, thus to density of an exponential distribution.

Quantities based on the KL distance can be seen as analogies to
CV representing randomness instead of variance (Kostal, Lansky, &
Pokora, 2013). It would be thus natural to use entropy to measure
the randomness of spike-counts analogously to the Fano factor.We
propose such a measure in this paper. It is defined as the ratio of
the Shannon entropy of numbers of spikes in a time interval to
the Shannon entropy of a Poisson counting process with the same
intensity. Due to similarity to the Fano factor, we call the measure
an entropy factor (HF). It creates a natural complement to existing
measures. For an overview of selected measures of variability and
randomness, see Fig. 1. Themeasures are classified into two groups
according to whether they focus on ISIs or spike counts, the crucial
difference between these two approaches being in the presence
of an additional parameter (the observation window length) in
the distribution of counts. Hence, the variability and randomness
measures of spike-counts provide a more complete and extensive
characterization of the underlying statistical spiking model, as re-
ported in this paper. As Fig. 1 also shows, all themeasures compare
a characteristic of given spike train to a Poisson process, which

is a simple, but efficient way how to improve interpretation and
comparison of various experiments.

The aim of this paper is to explore properties of entropy factor
and compare them with properties of Fano factor, to show that
there are some fundamental differences between the measures.
Behavior of the Fano factor has been studied in various papers,
mostly its dependence on the length of the observation window
or CV (Nawrot et al., 2008; Pipa, Gruen, & Vreeswijk, 2013; Rajdl
& Lansky, 2014) or its statistical properties (Eden & Kramer, 2010).
Here, the theoretical properties of the entropy factor are studied
and explicit formulas describing its behavior are derived. Firstly,
the equilibrium renewal process as a model of spike train is de-
fined. Based on this model, the standard variability measures and
their basic properties are summarized. Secondly, the newmeasure
is defined and investigated in the next section. To illustrate its
properties, two of the most often assumed models of the lengths
of ISIs are used, gamma and inverse Gaussian distributions (Fisch,
Schwalger, Lindner, Herz, & Benda, 2012; Koyama & Kostal, 2014;
Lansky, Sacerdote, & Zucca, 2016; Nawrot et al., 2008; Omi &
Shinomoto, 2011; Ostojic, 2011; Pipa et al., 2013; Shimokawa,
Koyama, & Shinomoto, 2010). Finally, the entropy factor is com-
pared to the Fano factor estimated from experimental data.

2. Spike train model

In a formal description, a spike train can be represented as a se-
quence of times of occurrence of the individual spikes, X1, . . . , Xn,
n ∈ N, and modeled using a (stochastic) point process. Probably
the most often used are renewal processes, which assume that all
the ISIs, Ti = Xi+1−Xi, i = 1, . . . , n−1, aremutually independent
and identically distributed random variables. This model is also
used here, however, we are well aware that the true character
of spike trains can be more complex (Avila-Akerberg & Chacron,
2011; Chacron et al., 2001; Farkhooi, Strube-Bloss, &Nawrot, 2009;
Schwalger, Droste, & Lindner, 2015).

A renewal process is defined by a continuous positive random
variable T , representing the lengths of ISIs, with a probability
density function f (t), cumulative distribution function F (t), and
mean µ = E(T ). To fully specify the renewal process, it is also
necessary to state the relationship between the sequence of spikes
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