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a b s t r a c t

In a physical neural system, learning rules must be local both in space and time. In order for learning
to occur, non-local information must be communicated to the deep synapses through a communication
channel, the deep learning channel. We identify several possible architectures for this learning channel
(Bidirectional, Conjoined, Twin, Distinct) and six symmetry challenges: (1) symmetry of architectures;
(2) symmetry of weights; (3) symmetry of neurons; (4) symmetry of derivatives; (5) symmetry of
processing; and (6) symmetry of learning rules. Random backpropagation (RBP) addresses the second
and third symmetry, and some of its variations, such as skipped RBP (SRBP) address the first and the
fourth symmetry. Here we address the last two desirable symmetries showing through simulations
that they can be achieved and that the learning channel is particularly robust to symmetry variations.
Specifically, random backpropagation and its variations can be performed with the same non-linear
neurons used in themain input–output forward channel, and the connections in the learning channel can
be adapted using the same algorithm used in the forward channel, removing the need for any specialized
hardware in the learning channel. Finally, we provide mathematical results in simple cases showing that
the learning equations in the forward and backward channels converge to fixed points, for almost any
initial conditions. In symmetric architectures, if the weights in both channels are small at initialization,
adaptation in both channels leads to weights that are essentially symmetric during and after learning.
Biological connections are discussed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Backpropagation implemented in digital computers has been
successful at addressing a host of difficult problems ranging
from computer vision (He, Zhang, Ren, & Sun, 2015; Krizhevsky,
Sutskever, & Hinton, 2012; Srivastava, Greff, & Schmidhuber, 2015;
Szegedy et al., 2015) to speech recognition (Graves, Mohamed, &
Hinton, 2013) in engineering, and from high energy physics (Baldi,
Sadowski, &Whiteson, 2014; Sadowski, Collado,Whiteson, & Baldi,
2015) to biology (Agostinelli, Ceglia, Shahbaba, Sassone-Corsi, &
Baldi, 2016; Di Lena, Nagata, & Baldi, 2012; Zhou & Troyanskaya,
2015) in the natural sciences. Furthermore, recent results have
shown that backpropagation is optimal in some sense (Baldi & Sad-
owski, 2016). However, backpropagation implemented in digital
computers is not the real thing. It is merely a digital emulation of a
learning process occurring in an idealized physical neural system.
Thus thinking about learning in this digital simulation can be useful
but also misleading, as it often obfuscates fundamental issues.

* Corresponding author.
E-mail address: pfbaldi@uci.edu (P. Baldi).
URL: http://www.ics.uci.edu/∼pfbaldi (P. Baldi).

Thinking about learning in physical neural systems or learning in
the machine – biological or other – is useful not only for better
understanding how specific or idealized machines can learn, but
also to better understand fundamental, hardware-independent,
principles of learning. And, in the process, it may occasionally also
be useful for deriving new approaches and algorithms to improve
the effectiveness of digital simulations and current applications.

Thinking about learning in physical systems first leads to the
notion of locality (Baldi & Sadowski, 2016). In a physical system,
a learning rule for adjusting synaptic weights can only depend on
variables that are available locally in space and time. This in turn
immediately identifies a fundamental problem for backpropaga-
tion in a physical neural systemand leads to the notion of a learning
channel. The critical equations associated with backpropagation
show that the deep weights of an architecture must depend on
non-local information, such as the targets. Thus a channel must
exist for communicating this information to the deep synapses—
this is the learning channel (Baldi & Sadowski, 2016).

Depending on the hardware embodiment, several options are
possible for implementing the learning channel. A first possibility
is to use the forward connections in the reverse direction. A second
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possibility is to use two separate channels with different charac-
teristics and possibly different hardware substrates in the forward
and backward directions. These two cases will not be further
discussed here. The third case we wish to address here is when
the learning channel is a separate channel but it is similar to the
forward channel, in the sense that it uses the same kind of neurons,
connections, and learning rules. Such a learning channel is faced
with at least six different symmetry challenges: (1) symmetry of
architectures; (2) symmetry of weights; (3) symmetry of neurons;
(4) symmetry of derivatives; (5) symmetry of processing; and 6)
symmetry of learning rules, where in each case the corresponding
symmetry is in general either desirable (5–6) or undesirable (1–4).

In the next sections,we first identify the six symmetry problems
and then show how they can be addressed within the formalism of
simple neural networks. While biological neural networks remain
the major source of inspiration for this work, the analyses derived
aremore general and not tied to neural computing in any particular
substrate.

2. The learning channel and the symmetry problems

2.1. Basic notation

Throughout this paper, we consider layered feedforward neu-
ral network architectures and supervised learning tasks. We will
denote such an architecture by

A[N0, . . . ,Nh, . . . ,NL] (1)

whereN0 is the size of the input layer, Nh is the size of hidden layer
h, and NL is the size of the output layer. For simplicity, we assume
that the layers are fully connected and let wh

ij denote the weight
connecting neuron j in layer h−1 to neuron i in layer h. The output
Oh
i of neuron i in layer h is computed by:

Oh
i = f hi (S

h
i ) where Shi =

∑
j

wh
ijO

h−1
j . (2)

The transfer functions f hi are usually the same for most neurons,
with typical exceptions for the output layer, and usually aremono-
tonic increasing functions. Typical functions used in artificial neu-
ral networks are: the identity, the logistic function, the hyperbolic
tangent function, the rectified linear function, and the softmax
function.

We assume that there is a training set ofM examples consisting
of input-target pairs (I(t), T (t)), with t = 1, . . . ,M . Ii(t) refers to
the ith component of the tth training example, and similarly for
Ti(t). In addition there is an error function E to be minimized by
the learning process. In general, we will assume standard error
functions, such as the squared error in the case of regression prob-
lemswith identity transfer functions in the output layer, or relative
entropy in the case of classification problems with logistic (two-
class) or softmax (multi-class) transfer functions in the output
layer, although this is not an essential point. The error function is
a differentiable function of the weights and its critical points are
given by the equations ∂E/∂wh

ij = 0.

2.2. Local learning

In a physical neural system, learning rules must be local (Baldi
& Sadowski, 2016), in the sense that they can only involve variables
that are available locally in both space and time, although for
simplicity here we will focus primarily on locality in space. Thus
typically, in the present formalism, a local learning rule for a deep
layer is of the form:

∆wh
ij = F (Oh

i ,O
h−1
j , wh

ij) (3)

while for the top layer:

∆wL
ij = F (Ti,OL

i ,O
L−1
j , wL

ij) (4)

assuming that the targets are local variables for the top layer.
Hebbian learning (Hebb, 1949) is a form of local learning. Deep
local learning corresponds to stacking local learning rules in a
feedforward neural network. Deep local learning using Hebbian
learning rules has been proposed by Fukushima (1980) to train
the neocognitron architecture, essentially a feed forward convo-
lutional neural network inspired by the earlier neurophysiological
work of Hubel andWiesel (1962). However, in deep local learning,
information about the targets cannot be propagated to the deep
layers and therefore in general deep local learning cannot find
solutions of the critical equations, and thus cannot succeed at
learning complex functions in any optimal way.

2.3. The learning channel

Ultimately, for optimal learning, all the information required
to reach a critical point of E must appear in the learning rule of
the deep weights. Setting the gradient (or the backpropagation
equations) to zero shows immediately that in general at a critical
point all the deep synapses must depend on the target or the error
information, and this information is not available locally (Baldi &
Sadowski, 2016). Thus, to enable efficient learning, theremust exist
a communication channel to communicate information about the
targets or the errors to the deep weights. This is the deep learning
channel or, in short, the learning channel. Note that the learning
channel is different from the typical notion of ‘‘feedback’’. Although
feedback and learning may share the same physical connections,
these refer in general to two different processes that often operate
at very different time scales, the feedback being fast compared to
learning.

In a learningmachine, onemust think about the physical nature
of the channel. A first possibility is to use the forward connections
in the reverse direction. This is unlikely to be the case in biological
neural systems, in spite of known example of retrograde transmis-
sion, as discussed later in Section 6. A second possibility is to use
two separate channels with different characteristics and possibly
different hardware substrates in the forward and backward direc-
tions. As a thought experiment, for instance, one could imagine
using electrons in one direction, and photons in the other. Biology
can easily produce many different types of cells, in particular of
neurons, and conceivably it could use special kinds of neurons in
the learning channel, different from all the other neurons. While
this scenario is discussed in Section 6, in general it does not seem to
be the most elegant or economical solution as it requires different
kinds of hardware in each channel. In any case, regardless of
biological considerations, we are interested here in exploring the
case where the learning channel is as similar as possible to the
forward channel, in the sense of beingmade of the same hardware,
and not requiring any special accommodations. However, at the
same time, we also want to get rid of any undesirable symmetry
properties and constraints, as discussed below. This leads to six
different symmetry challenges, four undesirable and two desirable
ones.

2.4. The symmetry problems

Symmetry of Architectures [ARC]: Symmetry of architectures
refers to having the exact same architecture in the forward and
in the backward channel, with the same number of neurons in
each hidden layer and the same connectivity. This corresponds to
the Bidirectional, Conjoined, and Twin cases defined below. In the
Bidirectional and Conjoined case the Symmetry of Architectures is
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