
Neural Networks 94 (2017) 212–219

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Recurrent networks with soft-thresholding nonlinearities for
lightweight coding
MohammadMehdi Kafashan a,c, ShiNung Ching a,b,*
a Department of Electrical and Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1042, MO 63130, United States
b Division of Biology and Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Campus Box 1042, MO 63130, United States
c Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, United States

a r t i c l e i n f o

Article history:
Received 27 January 2017
Received in revised form 18 June 2017
Accepted 7 July 2017
Available online 22 July 2017

Keywords:
Efficient sparse coding
Unsupervised learning
Short-term memory
Proximal gradient descent
Neural networks

a b s t r a c t

A long-standing and influential hypothesis in neural informationprocessing is that early sensory networks
adapt themselves to produce efficient codes of afferent inputs. Here, we show how a nonlinear recurrent
network provides an optimal solution for the efficient coding of an afferent input and its history. We
specifically consider the problem of producing lightweight codes, ones that minimize both ℓ1 and ℓ2
constraints on sparsity and energy, respectively. When embedded in a linear coding paradigm, this
problem results in a non-smooth convex optimization problem. We employ a proximal gradient descent
technique to develop the solution, showing that the optimal code is realized through a recurrent network
endowed with a nonlinear soft thresholding operator. The training of the network connection weights is
readily achieved through gradient-based local learning. If such learning is assumed to occur on a slower
time-scale than the (faster) recurrent dynamics, then the network as a whole converges to an optimal
set of codes and weights via what is, in effect, an alternative minimization procedure. Our results show
how the addition of thresholding nonlinearities to a recurrent network may enable the production of
lightweight, history-sensitive encoding schemes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

It has been hypothesized that the early stages of sensory neural
processing have evolved to encode environmental signals with
minimal consumption of biological resources (Attneave, 1954;
Bialek, de Ruyter Van Steveninck, & Tishby, 2006; King, Zylberberg,
& DeWeese, 2013; Laughlin, 2001; Olshausen et al., 1996), i.e., the
notion of efficient neural coding (Baddeley et al., 1997; Doi et al.,
2012; Graham, Chandler, & Field, 2006; Liu, Stevens, & Sharpee,
2009; Major & Tank, 2004; Schwartz & Simoncelli, 2001; Smith
& Lewicki, 2006; Srinivasan, Laughlin, & Dubs, 1982). A popular
model within efficient coding is that of sparse coding, which posits
that sensory information is encoded using a small number of active
neurons at any given point in time (Lee, Battle, Raina, & Ng, 2006;
Mairal, Bach, Ponce, & Sapiro, 2009, 2010). This has, in particular,
been considered a plausible model of visual cortical networks (Lee
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et al., 2006; Olshausen & Field, 1997, 2004). Specifically, it has been
shown that sparse coding produces localized bases when applied
to natural images (Olshausen, 2000) similar to those observed
in biological neurons in visual cortex (Olshausen & Field, 2004).
More generally, sparse coding can be applied to learning overcom-
plete basis sets (Lewicki & Sejnowski, 2000), in which the number
of bases is greater than the input dimension, which contrasts
unsupervised learning techniques such as principal component
analysis. Additionally, neural networks have been used widely to
approximate continuous functions (Barron, 1993; Costarelli, 2015;
Costarelli & Spigler, 2015; Costarelli & Vinti, 2016a, c, d; Di Marco,
Forti, Grazzini, & Pancioni, 2014; Gripenberg, 2003; Klusowski &
Barron, 2016) in different applications such as manifold learning
(Chui & Mhaskar, 2016) and image classification (Cao, Liu, & Park,
2013). In Costarelli and Vinti (2016b), Costarelli & Vinti established
convergence properties of a specific form of such networks.

1.2. Sparse coding framework

The goal of minimal energy sparse coding is to efficiently rep-
resent time-varying input vectors approximately as a weighted
linear combination of a small number of unknown basis vectors.
These basis vectors capture high-level salient structure in the input
data. Here, anm-dimensional input signal, denoted as x is encoded
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or represented using basis vectors d1, . . . , dn ∈ Rm and a sparse
vector of weights or firing rates r ∈ Rn as

x ≃ x̂ = Dr. (1)

The nominal goal is to find representations r that are ‘lightweight’,
i.e., minimal with respect to some combination of ℓ1 and ℓ2 crite-
ria. Mathematically, this can be formulated generally in terms of
optimization of the following objective

J(r) =
1
2
∥x− Dr∥22 +

λ2

2
∥r∥22 + λ1 ∥r∥1 (2)

with respect to r. Here, the first term is the data fidelity term
(the error between the reconstructed input signal and the actual
stimulus), the second term corresponds to the ‘energetic’ cost of
the signal representation, and the last term controls the sparsity
level of the representation.

1.3. Prior results

Optimizing objectives of the form (2) can be formulated and
solved in continuous and discrete frameworks. In the former, the
idea is to find a (continuous) dynamical system, or network, that
emits the optimal solution. In this regard, it has been shown that a
continuous-time algorithm based on the principles of thresholding
and local competition can solve a family of such problems (Rozell,
Johnson, Baraniuk, & Olshausen, 2007, 2008). The derived system
uses computational primitives that correspond to simple analog el-
ements,making possible a parallel implementation. Further, global
convergence to the true optimal solution has been established
in Balavoine, Romberg, and Rozell (2012).

In the discrete framework, the dominant approach to sparse
coding has utilized convex optimization techniques. Many al-
gorithms have been employed in this context such as gradient
projection (Nowak, Wright, et al., 2007), interior point method
algorithms (Candes & Romberg, 2005; Kim, Koh, Lustig, Boyd, &
Gorinevsky, 2007), and iterative thresholding methods (Bioucas-
Dias & Figueiredo, 2007; Blumensath, Yaghoobi, & Davies, 2007).

Sussillo and Abbott developed a learning scheme called FORCE
within the recurrent setting to construct networks that produce
a wide variety of complex output patterns that require memory
(Sussillo & Abbott, 2009). However, they use backpropagation to
train the networkwhich results in a non-local algorithm that is not
biologically plausible. In contrast, there has been recent interest to
show how simple forms of back-propagation could be realized in
a biologically plausible setting (Schiess, Urbanczik, & Senn, 2016;
Urbanczik & Senn, 2014). They present a simple compartmental
neuron model together with a non-Hebbian, learning rule for
dendritic synapses. It has been shown recently (DeWolf, Stewart,
Slotine, & Eliasmith, 2016; Gilra & Gerstner, 2017) that adaptive
control theory can be utilized to find local learning rules, though
the developed networks may exhibit cost-inefficient spiking ar-
chitectures. In Alemi, Machens, Denève, and Slotine (2017), the
authors proposed a local learning rule in a spiking neural network
with similar cost function as considered here (without the history
term) for learning arbitrary complex dynamics. They build a net-
work that learns to efficiently represent its inputswhile expending
the least amount of spikes.

1.4. Contributions

In this paper, we consider the problem of discrete-time sparse
coding with cost of the form (2), but with an additional objective
related to encoding the input history, i.e., to also enable reconstruc-
tion via:

x(t − q) ≃ DSqr(t), (3)

where q is a positive integer and S is a history-decodingmatrix.We
specifically seek to solve this problem by means of constructing
a (discrete-time) dynamical network of locally acting nodes that
takes an input x and subsequently produces r as an output. In other
words, we are interested in networks which can store memory
of the ongoing network activity. Secondarily, we consider the
problem of simultaneously learning both r and also the decoding
matrices D and S.

The problem of developing memory or history-sensitive codes
is itself well-studied. For example, it has been examined with-
out sparsity constraints using backpropagation through time in
Hochreiter and Schmidhuber (1997) andWerbos (1990). However,
such a solution technique is not amenable to implementation in
terms of a dynamical network. Otherworks have studied the short-
termmemory in linear echo state networkswith random recurrent
connections (Jaeger, 2002; LukošEvičIus & Jaeger, 2009; Maass,
Natschläger, & Markram, 2002). In White, Lee, and Sompolinsky
(2004), the authors reported that in the presence of noise, a partic-
ular class of orthogonal networks could havememory capacity that
scales with network size. Further, it has been shown in Vertechi,
Brendel, and Machens (2014) that a linear recurrent neural net-
work can learn to efficiently represent both its present and past
inputs with local learning rules for network connections. More
recently, the problem of memory encoding has been treated with
overt sparsity constraints (Charles, Yap, & Rozell, 2014; Ganguli &
Sompolinsky, 2010) using ℓ1 minimization methods over a reced-
ing horizon of a scalar-valued input signal. However, these results
pertain primarily to sparsity of the input in time, i.e., many samples
are zero, as opposed to sparsity within the vectors x or r.

The specific contributions of this paper are as follows:

1. We consider the discrete-time optimization of (2) with the
additional objective of encoding input history. To handle the
non-smoothness of the objective, we employ the proximal
gradient descent method (Bauschke, Goebel, Lucet, &Wang,
2008; Chen et al., 2012; Parikh & Boyd, 2013) and sub-
sequently derive a two-layer, nonlinear soft-thresholding
network that generates the optimal solution. The network
resembles the continuous time analogs referenced above,
but with the generalization of encoding history.

2. We propose an online local adaptation rule that enables the
simultaneous learning of the network weights (i.e., related
to D and S). This adaptation occurs on a slower time-scale
that the convergence of r, resulting in a network that, in
essence, performs an alternative minimization procedure.

3. We provide several numerical examples that illustrate the
performance of the proposed network in encoding input and
history, highlighting in particular dependence on network
size.

In our approach,we combine predictive codingwith local learn-
ing rules for the connections in the network. Recently, Thalmeier
and colleagues (Thalmeier, Uhlmann, Kappen, & Memmesheimer,
2016) used a similar strategy, combining predictive coding with
FORCE learning (Sussillo & Abbott, 2009), and showed that their
developed network could learn tasks such as the generation of
desired chaotic activity. In this approach, the network is trained by
propagating the error between the network output and a desired
reference signal. The reliance on feedback of an error signal in
this fashion results in non-local learning rules. In contrast, our
framework is unsupervised and uses only local learning rules.
Our proposed network is also different from echo-state networks
where the recurrent connections are fixed, and only the connec-
tions in the output layer are updated (LukošEvičIus & Jaeger, 2009;
Maass et al., 2002). In our case, all connections, including recurrent
ones, adapt over time.
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