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a b s t r a c t

Speech Emotion Recognition (SER) can be regarded as a static or dynamic classification problem, which
makes SER an excellent test bed for investigating and comparing various deep learning architectures.
We describe a frame-based formulation to SER that relies on minimal speech processing and end-to-end
deep learning tomodel intra-utterance dynamics.We use the proposed SER system to empirically explore
feed-forward and recurrent neural network architectures and their variants. Experiments conducted
illuminate the advantages and limitations of these architectures in paralinguistic speech recognition and
emotion recognition in particular. As a result of our exploration, we report state-of-the-art results on the
IEMOCAP database for speaker-independent SER and present quantitative and qualitative assessments of
the models’ performances.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, deep learning in neural networks has achieved
tremendous success in various domains that led to multiple
deep learning architectures emerging as effective models across
numerous tasks. Feed-forward architectures such as Deep Neural
Networks (DNNs) and Convolutional Neural Networks (ConvNets)
have been particularly successful in image and video processing as
well as speech recognition, while recurrent architectures such as
Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) RNNs have been effective in speech recognition and natural
language processing (LeCun, Bengio, &Hinton, 2015; Schmidhuber,
2015). These architectures process and model information in
different ways and have their own advantages and limitations.
For instance, ConvNets are able to deal with high-dimensional
inputs and learn features that are invariant to small variations
and distortions (Krizhevsky, Sutskever, & Hinton, 2012), whereas
LSTM-RNNs are able to deal with variable length inputs andmodel
sequential data with long range context (Graves, 2008).

In this paper, we investigate the application of end-to-end deep
learning to Speech Emotion Recognition (SER) and critically ex-
plore how each of these architectures can be employed in this task.
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SER can be regarded as a static or dynamic classification problem,
which has motivated two popular formulations in the literature
to the task (Ververidis & Kotropoulos, 2006): turn-based process-
ing (also known as static modeling), which aims to recognize emo-
tions from a complete utterance; or frame-based processing (also
known as dynamic modeling), which aims to recognize emotions
at the frame level. In either formulation, SER can be employed in
stand-alone applications; e.g. emotion monitoring, or integrated
into other systems for emotional awareness; e.g. integrating SER
into Automatic Speech Recognition (ASR) to improve its capabil-
ity in dealing with emotional speech (Cowie et al., 2001; Fayek,
Lech, & Cavedon, 2016b; Fernandez, 2004). Frame-based process-
ing is more robust since it does not rely on segmenting the input
speech into utterances and canmodel intra-utterance emotion dy-
namics (Arias, Busso, & Yoma, 2013; Fayek, Lech, & Cavedon, 2015).
However, empirical comparisons between frame-based processing
and turn-based processing in prior work have demonstrated the
superiority of the latter (Schuller, Vlasenko, Eyben, Rigoll, & Wen-
demuth, 2009; Vlasenko, Schuller, Wendemuth, & Rigoll, 2007).

Whether performing turn-based processing or frame-based
processing, most of the research effort in the last decade has been
devoted to selecting an optimal set of features (Schuller et al.,
2010). Despite the effort, little success has been achieved in real-
izing such a set of features that performs consistently over differ-
ent conditions and multiple data sets (Eyben, Scherer et al., 2015).
Thus, researchers have resorted to brute-force high-dimensional
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features sets that comprise many acoustic parameters in an at-
tempt to capture all variances (Tahon&Devillers, 2016). Such high-
dimensional feature sets complicate the learning process in most
machine learning algorithms, increase the likelihood of overfitting
and hinder generalization. Moreover, the computation of many
acoustic parameters is computationally expensive and may be dif-
ficult to apply on a large scale or with limited resources (Eyben,
Huber, Marchi, Schuller, & Schuller, 2015). Therefore, it is highly
pertinent to investigate the application of deep learning to SER
to alleviate the problem of feature engineering and selection and
achieve an SER with a simple pipeline and low latency. Moreover,
SER is an excellent test bed for exploring various deep learning ar-
chitectures since the task itself can be formulated inmultipleways.

Deep learning has been applied to SER in prior work, as dis-
cussed in Section 2. However, with different data subsets and un-
der various experiment conditions involved in prior studies, it is
difficult to directly compare various deep learning models. To the
best of our knowledge, our work provides the first empirical ex-
ploration of various deep learning formulations and architectures
applied to SER. As a result, we report state-of-the-art results on the
popular Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database (Busso et al., 2008) for speaker-independent SER.

The remainder of this paper is divided into seven sections. In
the following section, related work is reviewed, highlighting re-
cent advances. In Section 3, a review of deep learning is presented
focusing on the architectures and methods used in this paper. In
Section 4, the proposed SER system is explained. In Section 5, the
experimental setup is described, depicting the data, its preprocess-
ing, the computational setup and the training recipe. Experiments
performed and their results are presented in Section 6 and dis-
cussed in Section 7. Finally, the paper is concluded in Section 8.

2. Related work

Work on SER prior to 2011 is well reviewed in the literature
(Ayadi, Kamel, & Karray, 2011; Petta, Pelachaud, & Cowie, 2011;
Ververidis & Kotropoulos, 2006). Since DNNs displaced Gaussian
Mixture Models (GMMs) for acoustic modeling in ASR (Hinton
et al., 2012; Mohamed, Dahl, & Hinton, 2012), researchers have
attempted to employ DNNs for other speech applications as well,
and specifically for SER. Stuhlsatz et al. (2011) proposed a DNN
Generalized Discriminant Analysis to deal with high-dimensional
feature sets in SER, demonstrating better performance than
Support Vector Machines (SVM) on the same set of features. In Li
et al. (2013) a hybrid DNN—Hidden Markov Model (HMM) trained
on Mel-Frequency Cepstral Coefficients (MFCCs) was proposed for
SER and compared to a GMM—HMM indicating improved results.
Han, Yu, and Tashev (2014) used a DNN to extract features from
speech segments, which were then used to construct utterance-
level SER features that were fed into an Extreme Learning
Machine (ELM) for utterance-level classification outperforming
other techniques. In Fayek, Lech, and Cavedon (2016a), a DNN
was used to learn a mapping from Fourier-transform based filter
banks to emotion classes using soft labels generated frommultiple
annotators to model the subjectiveness in emotion recognition
which yielded improved performance compared to ground truth
labels obtained by majority voting between the same annotators.

More recently, alternative neural network architectures for
SER were also investigated. Mao, Dong, Huang, and Zhan (2014)
used a ConvNet in a two-stage SER scheme that involves learning
local invariant features using a sparse auto-encoder from speech
spectrograms, processed using Principal Component Analysis
(PCA) followed by salient discriminative feature analysis to extract
discriminative features demonstrating competitive results. Tian,
Moore, and Lai (2015) compared knowledge-inspired disfluency
and non-verbal vocalization features in emotional speech against

a feature set comprising acoustic parameters aggregated using
statistical functionals, by using LSTM-RNNs as well as SVM, where
the former was shown to yield better results given enough data.

This study differs from prior studies in several ways. We focus
on a frame-based formulation for SER, aiming to achieve a sys-
tem with a simple pipeline and low latency by modeling intra-
utterance emotion dynamics. Moreover, most previous studies
relied on some form of high-level features, while in this paper we
strive for minimal speech processing and rely on deep learning to
automate the process of feature extraction. Furthermore, we use
uniform data subsets and experiment conditions promoting com-
parisons across various deep learning models, which has not been
investigated in previous studies.

3. Deep learning: An overview

Deep learning in neural networks is the approach of composing
networks into multiple layers of processing with the aim of
learning multiple levels of abstraction (Goodfellow, Bengio, &
Courville, 2016; LeCun et al., 2015). In doing so, the network can
adaptively learn low-level features from raw data and higher-level
features from low-level ones in a hierarchical manner, nullifying
the over-dependence of shallow networks on feature engineering.
The remainder of this section reviews the architectures, learning
procedures and regularization methods used in this paper.

3.1. Architectures

The two most popular neural network architectures are the
feed-forward (acyclic) architecture and the recurrent (cyclic)
architecture (Schmidhuber, 2015). Feed-forward neural network
architectures comprise multiple layers of transformations and
nonlinearity with the output of each layer feeding the subsequent
layer. A feed-forward fully-connected multi-layer neural network
— also known as Deep Neural Network (DNN) — can be modeled
by iterating over Eqs. (1) and (2):

h(l)
= y(l−1)W(l)

+ b(l) (1)

y(l)
= φ(h(l)) (2)

where l ∈ {1, . . . , L} denotes the lth layer, h(l)
∈ Rno is a vector of

preactivations of layer l, y(l−1)
∈ Rni is the output of the previous

layer (l − 1) and input to layer l,W(l)
∈ Rni×no is a matrix of

learnableweights of layer l, b(l)
∈ Rno is a vector of learnable biases

of layer l, y(l)
∈ Rno is the output of layer l, y(0) is the input to the

model, y(L) is the output of the final layer L and themodel, andφ is a
nonlinear activation function applied element-wise. The activation
function used in this paper for feed-forward architectures is the
Rectified Linear Unit (ReLU) as in Eq. (3) due to its advantages over
other activation functions, such as computational simplicity and
faster learning convergence (Glorot, Bordes, & Bengio, 2011).

φ(z) = max(0, z). (3)

To provide a probabilistic interpretation of the model’s output,
the output layer L utilizes a softmax nonlinearity instead of the
nonlinear function used in previous layers as in Eq. (4):

softmax(zk) =
ezk

K
k=1

ezk
(4)

where K is the number of output classes.
A popular variant of the feed-forward neural network architec-

ture is the Convolutional Neural Network (ConvNet) (LeCun et al.,
1990), which leverages three ideas: sparse interactions; parame-
ter sharing; and equivariant representations. This can be achieved
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