
Neural Networks 91 (2017) 76–84

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Hopfield networks as a model of prototype-based category learning:
A method to distinguish trained, spurious, and prototypical attractors
Chris Gorman ∗, Anthony Robins, Alistair Knott
Department of Computer Science, University of Otago, 133 Union Street East, Dunedin 9016, New Zealand

a r t i c l e i n f o

Article history:
Received 10 November 2016
Received in revised form 25 March 2017
Accepted 14 April 2017
Available online 25 April 2017

Keywords:
Prototype theory
Cognition
Spurious attractors

a b s t r a c t

We present an investigation of the potential use of Hopfield networks to learn neurally plausible, dis-
tributed representations of category prototypes. Hopfield networks are dynamical models of autoassocia-
tive memory which learn to recreate a set of input states from any given starting state. These networks,
however, will almost always learn states which were not presented during training, so called spurious
states. Historically, spurious states have been an undesirable side-effect of training a Hopfield network
and there has beenmuch research into detecting and discarding these unwanted states. However, we sug-
gest that some of these statesmay represent useful information, namely stateswhich represent prototypes
of the categories instantiated in the network’s training data. It would be desirable for a memory system
trained on multiple instance tokens of a category to extract a representation of the category prototype.
We present an investigation showing that Hopfield networks are in fact capable of learning category pro-
totypes as strong, stable, attractors without being explicitly trained on them.We also expand on previous
research into the detection of spurious states in order to show that it is possible to distinguish between
trained, spurious, and prototypical attractors.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Many models of categorization focus on supervised learning
and similarity metrics and do not incorporate object prototypes,
instead basing category representations on exemplar theory.
Kruschke (2008) discusses several of these models in depth, but
in general they are given a stimulus, determine the similarity
between the stimulus and an exemplar stored inmemory, and then
determine the category. There are several ways to determine the
category, e.g. the probability of a category given an input can be
calculated based on the similarity of the stimulus to the exemplar
and how frequently an exemplar is associated with a category.

Recently, we introduced an unsupervised model of categoriza-
tion based on prototype theory called DPAN (Gorman & Knott,
2016). DPAN is focused on the learning of different levels of cat-
egorization (e.g. basic and subordinate levels) and attention to the
properties of a token object which make it unusual as an instance
of a type. Since it is a prototype-based model, DPAN does not take
exemplar theory into consideration.While this model is successful

∗ Corresponding author.
E-mail addresses: cgorman@cs.otago.ac.nz (C. Gorman),

anthony@cs.otago.ac.nz (A. Robins), alik@cs.otago.ac.nz (A. Knott).

in utilizing an inhibition of return operation to learn subordinate-
level categories, it relies on highly localist interpretations of input
data with questionable neural plausibility. For example, in an in-
put vector an active bit may represent the presence of an arbi-
trary, high-level feature (e.g. ‘‘has brown fur’’). Additionally, recent
neuroimaging, lesion, and cognitive studies (Blonder et al., 2004;
Hanson, Matsuka, & Haxby, 2004; Haxby, 2001; Martin, Chao, &
Haxby, 1999; Rakison & Yermolayeva, 2010) have shown that cat-
egories are internally represented as a large, distributed feature
space rather than as discrete ‘‘category units’’ per se. These issues
necessitate a more robust, distributed model of categorization.

To that end, we have explored the use of Hopfield networks
(Hopfield, 1982) as a model of category learning based on proto-
type theory. Hopfield networks are dynamical, recurrent, fully con-
nected (with no self-connections) autoassociative artificial neural
networks which learn a set of input patterns. During training, the
network is presented with a series of bipolar (i.e. either −1 or 1)
vectors as input patterns and the network then updates its weights
to reproduce these patterns. A Hopfield network learns a set of
stable states such that, from some starting state, the network up-
dates its state and traverses an energy surface until it reaches a
local minimum. The final state at this local minimum can either
be one which was presented during training (a trained state) or
one which was not (an untrained state). The states the network
reaches between its initial and final states are called intermediate

http://dx.doi.org/10.1016/j.neunet.2017.04.007
0893-6080/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2017.04.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2017.04.007&domain=pdf
mailto:cgorman@cs.otago.ac.nz
mailto:anthony@cs.otago.ac.nz
mailto:alik@cs.otago.ac.nz
http://dx.doi.org/10.1016/j.neunet.2017.04.007


C. Gorman et al. / Neural Networks 91 (2017) 76–84 77

states. These intermediate states form a basin of attraction around
the final state. The energy of the network slides into this basin until
it reaches an attractor with the lowest energy. A trained network
(with asymmetrical connections)may also oscillate between inter-
mediate states in the basin indefinitely.

Historically, untrained states have been considered undesir-
able. In general, a good associative memory network should have
high capacity, form large basins of attraction, be content address-
able, and retrieve only explicitly stored states. Hopfield networks
do not have a very high capacity (Wu, Hu, Wu, Zhou, & Du, 2012)
and they do allow the retrieval of untrained states. Hopfield net-
works are typically trained to recall tokens (rather than types). In
this context, an untrained state represents an error in learning. If
the network’s goal is to recall a token individual from a noisy input,
then recalling a state the network was never trained on is a major
problem with the model. Research into these networks has pro-
duced methods to identify and differentiate between trained and
untrained states as well as remove them from the network alto-
gether (see e.g. Abe, 1993; Robins&McCallum, 2004; vanHemmen,
1997). In the typical use case, identifying and discarding untrained
states is definitely beneficial, but what if some of these untrained
states represent useful information?

We hypothesize that, as a distributed model of associative
memory, Hopfield networks can learn representations of individ-
ual stimuli as well as their basic-level category (Rosch, 1973) in the
form of an object prototype. That is, learning tokens and types from
the input tokens alone. Importantly, the prototype is gleaned from
the information inherent to the execution of a Hopfield network
and the statistical similarities inherent to the input stimuli. There-
fore, we expand our earlier definitions such that untrained states
can either be spurious or prototypical. Spurious states are the clas-
sic case of a pattern which was not presented during training and
is an undesirable final state for a trained Hopfield network. Proto-
type states are those which do not correspond to input patterns,
but rather represent the categorical prototypes of those patterns.
We also propose that, using the methodology outlined in Robins
and McCallum (2004), we will be able to use the stability profile
of a final state to determine whether it is trained, prototypical, or
spurious.

Methodology

Our model is an asymmetrically connected thermal perceptron
learning rule Hopfield network trained on a set of synthetic, bipo-
lar input patterns. We explain the structure of the input data, the
network architecture, and the training regime in the following sec-
tions.

Input data

The key component of our hypothesis is that the network
should learn a category prototype as a stable attractor given a set
of token category individuals. To facilitate that, each training item
is stochastically generated from an initial prototype.

We start by generating one prototype per class, an example
of which is provided in Fig. 1. When generating the prototypes
we need to ensure that the category members have a high level
of intra-category similarity and a high level of inter-category
dissimilarity. To simulate thiswhilemaintaining neurally plausible
distributed object representations, we enable features within each
prototype based on a Gaussian window of probabilities (see Fig. 2).
The size of the window, i.e. the number of points in the Gaussian,
is set to be the number of neurons divided by the number of
prototypes, and the standard deviation is set to the window size
divided by ten. The Gaussian distribution is initialized within the
vector such that each feature contains a value between zero and

0 20 40 60 80

Fig. 1. An example of an object prototype. This figure is a heat map of a 100
unit vector such that −1 is blue and 1 is red. Since the prototype is a vector, the
height of this figure is arbitrary for visualization purposes. Each column in the figure
corresponds to one feature of the vector.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. The Gaussian window which was used to generate the prototype in Fig. 1.
Each integer on the X axis corresponds to a feature at that index in the prototype.
TheY axis represents the probability that the featurewill be set to 1 in the prototype.

one representing the probability that the value of the output
prototype at that index is equal to 1, otherwise it is −1. This
produces prototypeswhich contain a central cluster of features and
a small amount of noise.

For example, in Fig. 1 the center of the distribution is around
unit 50. The indices surrounding it form a Gaussian distribution of
probabilities. The value at each index is provided as a probability to
a Bernoulli trial, the result of which is stored in the output vector.
This new vector, representing a category prototype, contains a
noisy cluster of features which is then used to generate individual
patterns as members of that category.

When generating prototypes, we allow for a certain level
of overlap. If the newly generated prototype center lies within
WindowSize/4 of any other prototype center, it is recalculated. In
practice, whether or not the prototypes overlap at all is a function
of the random placement of the prototype center.

To create the actual training items (instance tokens) for the
network, we simply duplicate the prototype and randomly mutate
it. To do so, we select 20%1 of the features in the vector, randomly
choose the indices to alter, and then flip the bits. The resulting
training items (Fig. 3) have a set of strongly correlated features,
inherited from the prototype, along with a set of random features,
distinguishing one object from another.

The instance tokens also typically do not contain the entirety
of the prototype. That is, since the prototype bits can be flipped,
the instance tokens will likely have a few features which are dif-
ferent from their category prototype. Importantly, the prototypes
themselves are never presented to the network. When testing the
network, we are able to compare its final state to the input patterns
as well as the prototype to determine if it is trained, prototypical,
or spurious.

Network architecture and training regime

The Hopfield model is arranged as a single layer of k
McCulloch–Pitts neurons with weight matrix2 W. The weight

1 See section Discussion regarding this decision
2 By convention, capitalized boldface symbols are matrices and lowercase

boldface symbols are vectors.



Download English Version:

https://daneshyari.com/en/article/4946677

Download Persian Version:

https://daneshyari.com/article/4946677

Daneshyari.com

https://daneshyari.com/en/article/4946677
https://daneshyari.com/article/4946677
https://daneshyari.com

