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a  b  s  t  r  a  c  t

This work  tackles  the comparison  of radial  data,  and  proposes  comparison  measures  that  are  further
applied  to fingerprint  analysis.  First,  we study  the  similarity  of  scalar  and  non-scalar  radial  data,  elab-
orated on  previous  works  in fuzzy  set  theory.  This study  leads  to the  concepts  of  restricted  radial
equivalence  function  and  Radial  Similarity  Measure,  which  model  the  perceived  similarity  between  scalar
and vectorial  pieces  of radial  data,  respectively.  Second,  the  utility  of these  functions  is tested  in  the  con-
text  of fingerprint  analysis,  and  more  specifically,  in  the  singular  point  detection.  With  this  aim,  a  novel
Template-based  Singular  Point  Detection  method  is  proposed,  which  takes  advantage  of  these  functions.
Finally,  their  suitability  is  tested  in  different  fingerprint  databases.  Different  Similarity  Measures  are con-
sidered  to show  the  flexibility  offered  by these  measures  and  the  behavior  of  the  new method  is  compared
with  well-known  singular  point  detection  methods.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The ability to quantify the similarity between two  objects in a
given universe is a pillar in applied fields of research. Historically,
this quantification has been based on metrics, which are able to
capture, in a sensible (and coherent) manner, the proximity of any
two objects in a measurable universe. Metrics hold very interesting
properties, specifically triangular inequality, which preserves the
notion that the shortest path between two objects is the straight
one. However, they also impose the need for the representation of
the objects in a metric space, as well as notions (e.g., transitivity),
which are not natural in certain scenarios [1].

When it comes to measuring dissimilarity between multivalued
data, Lp metrics often come as a straightforward option; the most
relevant case is p = 2, which recovers the Euclidean metric. The Lp

metric has been long criticized, specially regarding its low accu-
racy in capturing perceptual dissimilarities. For example, Attneave
stated that the assumption that the psychological space is Euclidean
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in its character is exceedingly precarious [2]. Obviously, there exist
other metrics yielding more (perceptually) accurate measurements
of dissimilarity, specially when they are designed for well-defined
scenarios [3,4]. The debate about the restrictivity of the requisites
imposed by metrics is still open [5]. Literature contains both practi-
cal [6], and theoretical criticisms. Authors as Tversky [7] or Santini
and Jain [5] criticized the necessity of imposing metric conditions
to Similarity Measures, as well as the representation of objects in
metric spaces, given that they are often missing in human under-
standing. Tversky [7,8] also revisited the necessity of symmetry and
the directional nature of comparisons in certain scenarios. Finally,
the low representativity of the values given by metrics for large-
range comparisons has also been under debate [9,10].

Different mathematical theories have tackled the modelling of
similarity with tools other than metrics, leading to what Zadeh
referred to as a vast armamentarium of techniques for comparison
[11]. In fact, even axiomatic representations of non-metric com-
parison frameworks have appeared in the literature (e.g., [7] for
set-based similarity, or [12,13] for T-indistinguishability). In the
context of fuzzy set theory, a range of authors have elaborated on
the semantic interpretation of similarities and dissimilarities [5],
since Zadeh introduced similarity as an extension of equivalence
[11]. This is natural, considering that the concepts of proximity and
similarity (as well as ordering or clustering) are strongly related
to human interpretation, and hence prone to be tackled in fuzzy
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Fig. 1. Examples of singular points detected on fingerprints extracted from the NIST-4 dataset [19]. The deltas,  represented as triangles, are triangular-like ridge confluences,
while  cores, represented as circles, take place at curly ridge structures.

terms. A large variety of proposals have appeared for modelling
both similarity and dissimilarity; in this work we focus our inter-
est on two of them: Restricted Equivalence Functions (REFs) for the
comparison of membership degrees and Similarity Measures (SMs)
for the comparison of fuzzy sets on discrete universes [14].

In this paper we propose a definition of the concept of REFs
and SMs  for radial data. This study is motivated by the increas-
ing relevance of radial data in real applications, especially in those
demanding the extraction of information by means of computer
vision techniques. Very often, computer vision handles radial data
in different flavours (e.g., angular, vector or tensorial data [15]) and
consequently demands well-defined operators for different tasks,
including data comparison. Typically, the study of radial data has
been restricted to radial statistics, which mostly study the fitting
and analysis of well-known distributions on radial set-ups. To the
best of our knowledge, there are no studies on the quantification of
the similarity of elements in a radial universe. This situation has led
many researchers to use ad-hoc operators to deal with the special
conditions of the data, instead of creating a framework in which
different operators can be encompassed. For this reason in this
work we develop a framework aiming at easing the comparison
of radial data. More specifically, we define Restricted Radial Equiv-
alence Functions (RREFs), as well as Restricted Similarity Measures
(RSMs), which attempt to mimic  the behaviour of REFs and SMs  in
radial universes.

As a case of study, we present an application of RREFs and RSMs
to biometric identification, specifically to singular point detection
in fingerprint recognition [16]. Fingerprints can be seen as a set of
ridges (lines) that represent the relief of the skin in the fingertip
surface. Hence, their analysis is often based on studying the line
patterns in a local or semi-local basis. Within fingerprint analy-
sis, a fundamental operation is the detection and localization of
the so-called Singular Points (SPs), which are structural singulari-
ties in the ridges (see Fig. 1). SP detection is often related to specific
occurrences in the orientation of the ridges of neighbouring regions,
which are usually found using semi-local analysis [17] or complex
convolution filters [18].

On this account, a simple yet effective framework for SP detec-
tion is presented in this paper by means of RREFs and RSMs,
which shows the usefulness and flexibility of these new meas-
ures. Furthermore, other well-known SP detection algorithms have
been used as a baseline for performance evaluation [20,21]. In this
comparative analysis we have considered two different types of
databases: NIST-4 database [19], the most commonly used finger-
print database and synthetic fingerprint databases generated by
SFinGe.1

The remainder of the work is as follows. In Section 2 we review
the concepts of REF and SM,  as well as some standard notation
on radial data. Section 3 is devoted to introduce the concepts of

1 Synthetic Fingerprint Generator: http://biolab.csr.unibo.it/sfinge.html.

RREF and RSM. Both RREF and RSM are used in Section 4, in which
we present our proposal for SP detection in fingerprints. Section 5
includes an experimental study in which we illustrate the perfor-
mance of our SP detection method, compared to other well-known
methods in the literature. Finally, Section 6 gathers some conclu-
sions and a brief discussion on potential future evolutions of our
method.

2. Preliminaries

Among the areas in which fuzzy set theory has played a rele-
vant role, data similarity modelling is one of the most prominent.
The reason is that the natural concepts of similarity, closeness or
likeliness are inherently bounded to human interpretation. Hence,
different proposals have appeared to effectively model the compar-
ison of pieces of information. Among these, we  find fuzzy metric
spaces [6], with interesting advantages over classical metric spaces
in terms of interpretability [22] or equivalence and Similarity Meas-
ures [14], which we take as inspiration to develop measures that
can handle radial data. Next, we  recall the concepts of REF and SM.

Definition 1. A continuous, strictly decreasing function n : [0,
1] → [0, 1] such that n(0) = 1, n(1) = 0 and n(n(x)) = x for all x ∈ [0,
1] (involutive property) is called strong negation.

Definition 2. [14] A mapping r : [0, 1]2 → [0, 1] is said to be a
Restricted Equivalence Function (REF) associated with the strong
negation n if it satisfies the following:

(R1) r(x, y) = r(y, x) for all x, y ∈ [0, 1];
(R2) r(x, y) = 1 if and only if x = y;
(R3) r(x, y) = 0 if and only if {x, y} = {0, 1};
(R4) r(x, y) = r(n(x), n(y)) for all x, y ∈ [0, 1];
(R5) For all x, y, z, t ∈ [0, 1], such that x ≤ y ≤ z ≤ t then r(y, z) ≥ r(x,

t).

Note that (R5) means that, for all x, y, z ∈ [0, 1], if x ≤ y ≤ z then
r(x, y) ≥ r(x, z) and r(y, z) ≥ r(x, z).

REFs attempt to capture the perceived similarity between two
values in [0, 1], which in fuzzy set theory usually represent mem-
bership degrees. It is usual to construct REFs from a pair of
automorphisms of the unit interval, as proposed in [14], although
alternative methods have also been studied [23].

Definition 3. A continuous, strictly increasing function ϕ : [a,
b] → [a, b] such that ϕ(a) = a and ϕ(b) = b is called automorphism
of the interval [a, b] ⊂ R.

Proposition 1. [14] Let ϕ1, ϕ2 be two automorphisms of the interval
[0, 1].  Then

r(x, y) = ϕ−1
1 (1 − |ϕ2(x) − ϕ2(y)|)

is a REF associated with the strong negation n(x) = ϕ−1
2 (1 − ϕ2(x)).

http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html
http://biolab.csr.unibo.it/sfinge.html


Download English Version:

https://daneshyari.com/en/article/494668

Download Persian Version:

https://daneshyari.com/article/494668

Daneshyari.com

https://daneshyari.com/en/article/494668
https://daneshyari.com/article/494668
https://daneshyari.com

