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a  b  s  t  r  a  c  t

This study  concerns  the  training  of  a neural  network  in  multiple  stages  considering  minimization  of
errors  from  multiple  data/pattern  resources.  The  paper  proposed  a dual  stage  multi-resource  data  training
scheme  using  multi-objective  genetic  algorithm.  The  training  scheme  has  been  used  for  the  design  and
development  of  efficient  neural  network  model  focusing  on  missing,  but  most  informative  domains  of
the  data  set  by  means  of introducing  only  a few patterns  from  missing  domain  treated  separately  during
the  later  stage  of training.  The  trained  model  has  been  used  to  design  a quaternary  Al–Mg–Cr–Sc  alloy
system,  from  the  information  subsets  of binary  Al–Cr  and  the  ternary  Al–Mg–Sc  alloys.  The  validity of
the  proposed  algorithm  has  been  discussed  in  light  of  the  evolution  of the  ageing  characteristics  of  the
new  aluminium  alloy  system.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The experimental design and development of aluminum alloys
are founded on the basis of some significant alloying addition lead-
ing to the development of specific alloy series viz. 2xxx, 5xxx
and so on Ref. [1]. The increasing uses of the alloys in automo-
tive and aerospace applications [2,3], demand high and reliable
performance resulting in search of new improved aluminum alloy
systems. The unique feature of such alloys is low density with ade-
quate strength. The chief mechanism for increasing the strength of
the aluminium alloys is the heat treatment called age hardening.
During this heat treatment precipitates of intermetallic com-
pounds form within the matrix. In case of aluminium–magnesium
alloy, such phenomenon could not be observed. Addition of other
elements like chromium and/or scandium may  impart this phe-
nomenon, and thus improve the strength of the alloy. Therefore,
the design of the new aluminum alloys based on the response
knowledge space from the known binary to ternary systems and
the known ternary to quaternary systems is important.
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Recently, neural network (NN) tool has received increasing
attention for data analysis and explore the functional properties
space by modeling the material systems [4–8]. Usually, NN based
materials design techniques aims to train the system by learn-
ing algorithms, where some data are developed from experimental
studies. Then these models are used to design the chemistry, pro-
cess and structure space of the materials prior to the experimental
development of the alloys. NN along with other computational
intelligence tools find promising applications in materials infor-
matics and alloy design approaches [9–16]. Among the different
varieties of neural networks, the feed forward NNs (FNNs) features
the most general approach to represent the network structure, sim-
plicity in representing a problem, and availability of number of
training algorithms [17]. Probably because of these reasons, FNNs
are widely popular in many engineering applications, and alloy
design is certainly no exception [18–25]. This study also focuses
on the application of FNNs in the context of the design of age-
hardenable grade of aluminum alloys.

When a FNN is applied to function approximation task, like map-
ping of alloy properties as output from the chemistry and process
parameter space as the inputs, the primary interests are to develop
a predictive model and to explore the pattern of underlying phe-
nomenon in the alloy system(s) [23]. Thus, a major objective is
generalization of predictability of NN to the unknown data regime
in order to design new alloys with improved properties and wider
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engineering applications. Nevertheless, given the properly selected
network size and training algorithm, the selection of training data
set substantially regulate the performance of the trained network.
This is a problem of pragmatic interest of the neural network users.
Only a limited amount of research has been conducted on this issue
[26] and asks for more attention of researchers in future. Acute
problem appears when the data have missing or sparse informa-
tion of any particular pattern, which is of major importance for the
purpose the model is developed for. In such condition, it becomes
hard to incorporate the particular hidden pattern during future pre-
diction or design using the NN model. As in the present context, the
in-house generation of training data being beyond the scope, the
data is taken from literature, which is generated with time in dif-
ferent laboratories. Hence, the data pattern for training is limited
by the traditional choice of the researcher in contemporary exper-
imental interest. The objective of the NN analysis of the data in this
work was to recognize the age hardening pattern of the quaternary
Al–Mg–Sc–Cr alloy system. In the present application, a new train-
ing strategy for neural networks has been proposed on a data that
inherits the age hardening knowledge of ternary Al–Mg–Sc alloy
system as well as binary Al–Cr alloy system, but the age harden-
ing pattern of the quaternary Al–Mg–Sc–Cr alloy remain missing.
The missing pattern of aging behavior of the alloy has been recog-
nized by the multi stage training through the additional resource
of micro-data experimentally developed for the purpose. In short,
published experimental data of two different alloy systems are used
to develop the model, which failed to predict a peculiar behavior of
a third alloy system, which was developed experimentally by the
authors mixing the first two alloy systems. The problem of model-
ing such systems revealed here and a solution is also proposed.

In the proposed strategy of the present work, the initial stage of
the training follows the concept of FF backpropagation with scale
conjugate gradient descent training algorithm. However, second
stage of training focuses on the micro-data of the missing pattern
domain along with the original data of the stage one in multi-
objective data training scheme using a multi objective genetic
algorithm (MOGA) aiming to minimize the both the error simul-
taneously as discussed in the following sections.

2. Structure of the new training approach

2.1. Conventional single layer backpropagation neural network
training

A back propagation NN comprises an input layer, one or more
hidden layer and an output layer where each of the layers consists
of number of neurons or nodes. In the general case, the number of
nodes in the input and output layer is determined by the application
problem under study, while that of the hidden layer is needed to be
heuristically devised by the user. On the other hand, each node of a
layer is connected to every node of the next layer through synaptic
connections. In the present application, we use a single layer 9-N-
1 type network structure, where 9 is the number of input neurons
constituted by the alloy chemistry (Mg, Sc, Cr, Si, Zr and Ti), percent
cold deformation, ageing temperature (A.Temp.) and ageing time
(A.Time). N is the number of hidden neurons in the only hidden
layer determined through trial and error method. Hardness is the
only output in our study. The connectivity between the layers are
developed using the tan-hyperbolic (tan h) transfer function at the
hidden layer and linear transfer function at the output layer. The
computed output of the node in the output layer can be represented
as follows [12]:

y =
[

j∑
1

Wj

{
tanh

(
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1

wjixi + bj

)}
+ b

]
(1)

where y is the output of the node in the output layer; xi is the input
of the ith node in the input layer and wij is the connective weights
between nodes in the inputs and hidden layer. Wj represents the
connection weights between the nodes in the hidden layer and the
outputs; and bj and b are bias terms that represent the threshold of
the transfer function.

The learning error e, can be calculated by the following formula:

e =
p∑

q=1

(
yq − aq

)2

p
(2)

where e is the mean square error of the actual output and desired
output of the training samples used for training. This error e is
defined as the fitness function in multi criteria training using GA
as described later.

2.2. Need for multi-objective training of neural network

It is well known that the selection of data/patterns for network
training is a significant issue. This is a problem that has tangi-
ble implications and always been the attention of researcher. The
training data set selection can have significant impact on the perfor-
mance of the trained network. Particularly, when we use a trained
network for prediction in the interpolation regime or in the regime
for which the data pattern density in the training data is poor, the
performance is surprisingly poor. During training of the network,
the algorithms adjust the weights focused on the overall predic-
tion error on the training or testing data. However, the example
pattern with poor data pattern density in the training or testing
data fail to gain the necessary importance in the training process.
As a result, the trained network prediction performance becomes
poor and highly uncertain in this regime. If beside the main stream
of data, the data for the poorly populated regime is treated sepa-
rately and the error information computed from both the data set
separately in the parameter adjustment process during training,
the problem can resolved. Nevertheless, the training algorithm has
to take care of more than one error information and the weight
adjustment will take place under a multi-objective optimization
scenario. In multiple objective scenarios, the conventional math-
ematical optimization techniques based training algorithms such
as scale conjugate gradient or Levenberg–Marquardt based algo-
rithms are not efficient. On the other hand, multi objective genetic
algorithm (MOGA) is a fascinating heuristic tool to solve such prob-
lem [27]. Therefore, a training scheme efficient for multi-source
date using MOGA has been proposed and presented here.

2.3. Multi-objective genetic algorithm (MOGA)

The genetic algorithms (GAs) are optimizers influenced by the
principles of natural selection and natural genetics [28,29] mimics
the Darwin’s theory of evolution “survival of the fittest”. In contrast
to the many gradient-based traditional optimization techniques,
GA does not start with a single guess solution [28]. Nevertheless,
it generates number of random individuals each signifying a possi-
ble solution. A population of such individuals undergoes a process
of simulated Darwinian evolution through application of genetic
operators typically known as selection, cross over and mutation. In
this manner, a new generation is obtained, which may offer better
individuals as optimal solution.

In case of multi-objective problems, the genetic search is per-
formed following the concept of Pareto-optimality [30]. In case of
multi-objective problems, a search is generally performed follow-
ing the concept of Pareto optimality. In contrast to single-objective
optimization, where fitness assessment can easily be done from
the objective function use of section operator is simple, in multi-
objective optimization fitness assignment and selection is more
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