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a b s t r a c t

Although Hebbian learning has long been a key component in understanding neural plasticity, it has not
yet been successful inmodelingmodulatory feedback connections, whichmake up a significant portion of
connections in the brain. We develop a new learning rule designed around the complications of learning
modulatory feedback and composed of three simple concepts grounded in physiologically plausible
evidence. Using border ownership as a prototypical example, we show that a Hebbian learning rule fails
to properly learn modulatory connections, while our proposed rule correctly learns a stimulus-driven
model. To the authors’ knowledge, this is the first time a border ownership network has been learned.
Additionally, we show that the rule can be used as a drop-in replacement for a Hebbian learning rule to
learn a biologically consistent model of orientation selectivity, a network which lacks any modulatory
connections. Our results predict that the mechanisms we use are integral for learning modulatory
connections in the brain and furthermore that modulatory connections have a strong dependence on
inhibition.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The brain has a remarkable ability to learn to process com-
plicated input through self-organization, and since the studies of
Hubel and Wiesel (1963) it has been known that the develop-
ment of early visual processes is dependent on experience. In
the decades since, models of visual development have focused on
feedforward pathways, with little attention given to the learning
of modulatory connections. Modulatory connections, which adjust
existing neuron activations instead of directly driving them, domi-
nate feedback pathways,which themselves constitute amajority of
the connections in the brain (Markov et al., 2014). Hebbian-based
models have come a long way in explaining potential mechanisms
of learning (Clopath, Büsing, Vasilaki & Gerstner, 2010; Hebb,
1949; Widloski & Fiete, 2014), especially in feedforward models
of V1 (Stevens, Law, Antolík & Bednar, 2013), but an increasing
amount of literature suggests that more comprehensively explain-
ing plasticity requires novel approaches (Lim et al., 2015; Zenke,
Agnes & Gerstner, 2015). We will argue that the principles of Heb-
bian learning, known colloquially as fire together, wire together,
cannot be used alone to learn correctly or maintain stability in the
context of modulatory connections.
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The primary contributions of this work are twofold: the de-
velopment of a new learning rule that handles modulatory con-
nections, and showing that a stimulus driven feedback model of
border ownership can be learned in a biologically plausible way
as a result of the new learning rule. The new learning rule, which
we call conflict learning, is composed of three conceptually simple,
physiologically plausible mechanisms: adjusting plasticity based
on the activation of strongly learned connections, using inhibition
as an error signal to explicitly unlearn connections, and exploiting
several timescales. With border ownership as our prototypical ex-
ample, we show that a Hebbian learning rule fails to properly learn
modulatory connections, while the components of our proposed
rule enable it to learn the required connections. Border ownership,
which involves the assignment of edges to owning objects, is per-
haps one of the earliest and simplest visual processes dependent
upon modulatory feedback (Kogo & van Ee, 2014), appearing in
V1, V2, and V4 (Zhou, Friedman & Von Der Heydt, 2000). Although
many models of its function exist (e.g., lateral models: Sakai and
Nishimura (2006); Zhaoping (2005), feedforward: Supèr, Romeo
and Keil (2010), and feedback: Craft, Schütze, Niebur and Von
Der Heydt (2007)) those incorporating feedback are especially
promising, integrating well with models of attention (Mihalas,
Dong, vonderHeydt&Niebur, 2011;Qiu, Sugihara&vonderHeydt,
2007) and concepts of grouping (Martin & von der Heydt, 2015).
However, until now, all of these models have used fixed, hand-
crafted weights, with no demonstration of how the connection
patterns for border ownership might be learned.
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With our new learning rule, we demonstrate that inhibitory
modulation of plasticity, in conjunction with competition, is likely
a crucial mechanism for learning modulatory connections. Addi-
tionally, we show that the rule can be used as a drop-in replace-
ment for a Hebbian learning rule even in networks lacking any
modulatory connections, such as an orientation selective model
of primary visual cortex. Conflict learning is compared against a
recent Hebbian learning based rule (GCAL; Stevens et al. (2013)),
which is a good baseline rule for comparison because its weight
updates are governed purely by Hebbian logic and it operates at a
level of abstraction that captures important physiological behav-
iors while still being usable in large scale neural network models
(e.g., orientation selectivity) and being adaptable for use in new
network architectures (e.g., border ownership). We demonstrate
that conflict learning, like a Hebbian rule such as GCAL, can be used
to learn a biologically consistent model of orientation selectivity.
Our results further suggest that networks learned with conflict
learning have improved noise and stability responses.

Conflict learning works in a fundamentally different way to
previous learning rules by leveraging inhibition as an error sig-
nal to dynamically adjust plasticity. Though many existing tech-
niques built upon Hebbian learning, such as those derived from
STDP (spike timing-dependent plasticity, Song, Miller and Abbott,
2000) or BCM learning (Bienenstock, Cooper & Munro, 1982), have
some method to explicitly control synaptic weakening (e.g., based
on signal timing for STDP or comparisons to long term activation
averages for BCM), inhibition only indirectly affects learning by
lowering activation. Our successful application of the rule to learn-
ing models of orientation selectivity as well as border ownership
serves as a prediction that modulatory connections in the brain
require inhibition and competition to play a bigger role in the
dynamics of neural plasticity and activation.

2. Modulatory connections

Modulatory connections are the primary motivation for the
development of conflict learning. They are found extensively in
feedback projections related to visual processing, for example from
visual cortex to the thalamus (Cudeiro & Sillito, 2006; Jones et
al., 2012, 2015), from higher visual areas to primary visual cor-
tex (Callaway, 2004; Hupe, James, Girard, Lomber, Payne et al.,
2001), as well as from posterior parietal cortex to V5/MT (Friston
& Büchel, 2000). Top-down modulatory influences also play a
role in phenomena such as attention (Baluch & Itti, 2011; Beuth
& Hamker, 2015; Yantis, 2008), object segmentation (Roelfsema,
Lamme, Spekreijse & Bosch, 2002), and object recognition (Bar et
al., 2006). Attention is a modulatory effect and has the greatest
impact on already active representations (Buschman & Kastner,
2015). Modulatory feedback, used in much the same way as in
our border ownership experiment, has been used to construct a
model of attention that replicates numerous observed attentional
effects on both firing rates and receptive field structure (Miconi &
VanRullen, 2016).

Modulatory connections can alter the existing activation of a
neuron, but cannot cause activity in isolation; they must work
in conjunction with driving inputs (Brosch & Neumann, 2014b).
We can observe this distinction mathematically by first looking at
the activation function for an artificial neuron, which is typically
modeled by some function of its weighted inputs:

xj = f

⎛⎝ ∑
i∈input

xiwij

⎞⎠ (1)

where wij is the weight between neurons i and j and xi is the
activation of neuron i.

However, as modulatory connections are defined as those that
do not directly drive the activation of a neuron, their effectmust be
distinguished from driving connections, which, in similar fashion
to Brosch and Neumann (2014b), we formalize as:

xj = f (Dj + g(Dj,Mj)) (2)

where Dj =
∑

i∈drivingxiwij and Mj =
∑

i∈modulatoryxiwij. g is a
monotonically increasing function with respect to Dj and Dj = 0
implies that g(Dj,Mj) = 0. Typically, g is a simple product between
Dj and Mj (e.g., Bayerl and Neumann, 2004; Brosch and Neumann,
2014a; Roelfsemaet al., 2002), hypothesized to be implementedbi-
ologically by backpropagation-activated coupling (Larkum, 2013).

When feedforward inputs are taken to be driving and feed-
back to be modulatory, it can be said that feedback is gated by
feedforward, an effect noted by Larkum (2013). Roelfsema et al.
(2002) discuss the idea of gating in detail and use it to support a
model of figure-ground segregation. This gating allows networks
to integrate feedback without struggling to balance it against feed-
forward input or incurring spurious top-down-driven activation.
The physiological mechanics ofmodulation have been best studied
in relation to the thalamus, with a recent review by Varela (2014)
showing that modulatory input is extensive and heterogeneous
in regard to origin, neurotransmitter, and function. Brosch and
Neumann (2014b) discuss the evidence for the potential physio-
logical implementation of modulatory feedback while developing
a network-level circuit model for feedforward and feedback inter-
action.

2.1. Hebbian learning and modulatory connections

Traditional Hebbian based learning rules adapt weights based
on some function of the coincidental firing of pre and postsynaptic
neurons:

∆wij = f
(
wij, xi ∗ g

(
xj
))

. (3)

Hebbian learning in its most basic formulation has no mecha-
nism to bound weight growth, making it trivially unstable. For our
purposes we use a formulation of Hebbian learning that includes
a normalization component for stability, adapted from Stevens et
al. (2013):

∆wij =
wij + ηxixj∑
k(wkj + ηxkxj)

− wij (4)

where η is the learning rate. This weight update, and its nor-
malization, are applied independently to driving and modulatory
connections (i.e. all wij are the same connection type).

To better understand why such a Hebbian rule is not suitable
for learning modulatory connections, let us look at the dynamics
of a minimal network with two competitive neurons, illustrated
in Fig. 1. In this context, competitive means that the neurons are
connected such that more active neurons inhibit the activation of
those less active through lateral connections. The desired state of
this network is to have each competing neuron develop a strong
connection to a unique source of modulatory input. It should be
noted that this end state is considered desired due to its computa-
tional usefulness as a source of top-down information rather than
a direct extrapolation from biology.

We can imagine this network as, for example, a simple attention
network concerned with detecting apples or oranges in its input.
The modulatory connections act as attentional biases towards ei-
ther apples (M1) or oranges (M2). Though one fruit may be desired
over the other (e.g., searching for a specific fruit; M1 active versus
M2), the network has no control over what is present in its input.
Features related more to apples (N1) or to oranges (N2) may be
active regardless of the bias signal, even occurring simultaneously.
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