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h i g h l i g h t s

• Neural mass models simulate pathological oscillations of the basal ganglia (BG).
• The origins of upper and lower beta frequency oscillations in the BG are different.
• There is a transition mechanism between upper and lower beta oscillatory activities.
• Self-inhibition within the GPe plays a significant role.
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a b s t r a c t

In Parkinson’s disease, the enhanced beta rhythm is closely associated with akinesia/bradykinesia and
rigidity. An increase in beta oscillations (12–35 Hz) within the basal ganglia (BG) nuclei does not
proliferate throughout the cortico-basal ganglia loop in uniform fashion; rather it can be subdivided into
two distinct frequency bands, i.e. the lower beta (12–20 Hz) and upper beta (21–35 Hz). A computational
model of the excitatory and inhibitory neural network that focuses on the population properties is
proposed to explore themechanismunderlying the pathological beta oscillations. Simulation results show
several findings. The upper beta frequency in the BG originates from a high frequency cortical beta, while
the emergence of exaggerated lower beta frequency in the BG depends greatly on the enhanced excitation
of a reciprocal network consisting of the globus pallidus externus (GPe) and the subthalamic nucleus
(STN). There is also a transition mechanism between the upper and lower beta oscillatory activities, and
we explore the impact of self-inhibition within the GPe on the relationship between the upper beta and
lower beta oscillations. It is shown that increased self-inhibition within the GPe contributes to increased
upper beta oscillations driven by the cortical rhythm, while decrease in the self-inhibition within the
GPe facilitates an enhancement of the lower beta oscillations induced by the increased excitability
of the BG. This work provides an analysis for understanding the mechanism underlying pathological
synchronization in neurological diseases.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Parkinson’s disease (PD) is a common progressive neurodegen-
erative disorder characterized by a profound degeneration of ni-
grostriatal dopaminergic neurons (Walters & Bergstrom, 2009).
Such a pathological degeneration results in a decrease in the level
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of dopamine in the brain, which induces the occurrences of abnor-
mal discharges in the neurons of the basal ganglia (BG) in both
patients (Magnin, Morel, & Jeanmonod, 2000; Weinberger et al.,
2006) and animal models (Moran et al., 2011; Wichmann, 2005)
of PD. Periodic oscillatory activity is typically presented in record-
ings (Hutchison, 2004), which has been shown to correlate with
the motor symptoms of PD, such as akinesia/bradykinesia, rigidity
and tremor (Bergman & Deuschl, 2002). It is known that, akine-
sia/bradykinesia and rigidity are associated with oscillations in the
beta-band range of frequencies (12–30 Hz) in the BG nuclei (Kuhn
et al., 2008; Ray et al., 2008). In addition, there is a relationship
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between synchronous theta-band (3–10 Hz) oscillatory activity
and Parkinsonian resting tremor (Tass et al., 2010).

There have been previous studies focusing on the explorations
of the origins of the abnormal oscillations, especially the beta
oscillations in the BG network. Some results showed that
pathological beta oscillations seen in the BG could result from
a periodic external drive (such as cortical input) or interactions
between the excitatory and inhibitory nuclei (i.e. subthalamic
nucleus (STN) and globus pallidus externus (GPe)) within the
BG (Moran et al., 2011; Nevado-Holgado, Mallet, Magill, &
Bogacz, 2014; Plenz & Kital, 1999). Because of the complex
network interactions within the BG, computational modeling is an
important tool to explore the conditions of sustained pathological
oscillations that are inherent in PD (de Paor & Lowery, 2009; Holt
& Netoff, 2014; Pasillas-Lépine, 2013). Gillies et al. established
a computational model to capture the dynamics of the STNGPe
reciprocal loop and thought the periodic rhythmic oscillations
are favored by increased inhibition of the globus pallidus (GP)
(Gillies, Willshaw, & Li, 2002). Holgado et al. identified a simple set
of necessary conditions on model parameters that guarantee the
existence of beta oscillations. They proposed that beta oscillations
in the STN-GPe network could occur independently on the rhythms
of the cortical inputs (Holgado, Terry, & Bogacz, 2010). Brittain et al.
reviewed the different mechanisms of the lower beta (12–20 Hz)
and upper beta (21–35 Hz) oscillations in the BG. It appears likely
that the upper cortical beta range impacts the BG activity, while
the emergence of a pronounced lower beta oscillation in the BG’s
local field potentials (LFPs) is due to the reciprocal structure of the
excitatory and inhibitory neural network (Brittain & Brown, 2014).
Thus, in order to further explore these hypotheses a computational
model is used to show the contribution of the cortical external
input and the intrinsic properties of the BG to the emergent
pathological beta oscillation.

Recently,mesoscopicmodels of the BGhave received increasing
interest among researchers (Haidar et al., 2014; Nevado-Holgado
et al., 2014; Pavlides, Hogan, & Bogacz, 2015; Pavlides, John
Hogan, & Bogacz, 2012; Tsirogiannis, Tagaris, Sakas, & Nikita,
2010), which focus on the possible mechanisms for generation of
excessive beta oscillations in PD. However, these models do not
distinguish between lower and upper beta oscillations occurring
in the pathological BG. This work uses an approach that is similar
to a well-known mesoscopic cortical model developed by Jansen
and Rit (1995) and Jansen, Zouridakis, and Brandt (1993), which
describes the dynamical characteristics of the different rhythms.
By changing the internal coupling connection within and external
coupling connection to the BG from cortex and striatum frompulse
densities of actionpotentials to the LFPs, a novel neuralmassmodel
of BG is proposed. This model may contribute to an exploration of
the different mechanisms of the pathological neural oscillations
at the lower and upper beta frequency bands in PD. Based on
the established computational model, the roles of the neurons’
excitability and self-inhibition within the GPe are investigated.
The rest of this paper is organized as follows. Section 2 describes
a computational model of the pathological oscillatory population
dynamics. In Section 3, the possible origins of the pathological
beta oscillations are explored. Finally, the conclusions are given in
Section 4.

2. Model and methods

According to the anatomy of the BG (Fig. 1(a) and (b)) and
electrophysiological findings in PD, a neural mass model that
describes the neural population behaviors of the BG is proposed
based on an original cortical model proposed by Jansen and
Rit (1995) and Jansen et al. (1993), a BG model proposed by
de Paor and Lowery (2009) and a cortico-basal ganglia-thalamic

model proposed by Moran et al. (2011). As shown in Fig. 1(c),
the excitatory nucleus STN and the inhibitory nucleus GPe are
represented by sigmoidal nonlinear elements and second-order
linear elements. In this classic mean field approach, the low-
order dynamical linear system approximates the average neuronal
membrane summation of synaptic input, and the sigmoidal
nonlinear block computes the expected spike density for the
population (Wilson & Cowan, 1972). The outputs of the model
are the LFPs of the GPe and STN. Here, yCor represents a cortical
input to the STN and yStr represents an inhibitory input from the
striatum to the GPe (Davidson, de Paor, & Lowery, 2014; de Paor &
Lowery, 2009). It was reported that the gain of the linear element
plays a significant role in changing the excitation or inhibition of
the neural network (Jansen & Rit, 1995; Jansen et al., 1993; Lopes,
Hoeks, Smits, & Zetterberg, 1974; Lopes, van Rotterdam, Barts,
van Heusden, & Burr, 1976; Mina, Benquet, Pasnicu, Biraben, &
Wendling, 2013; Wilson & Cowan, 1972).

The BG model contains a reciprocal structure in which the STN
projects excitatory synaptic connections to and receives inhibitory
feedback from the GPe, and the GPe also has recurrent inhibitory
connections to itself. In this work, C1, C2 and C3 describe the
coupling strengths of the inhibitory connections from GPe to
STN, the excitatory connections from STN to GPe and the self-
inhibitionwithin the GPe, respectively. Here, the coupling strength
parameters are assumed to satisfy C1 = C3 = 0.5C2, with C2 = 20.

The mathematical basis of the population level formulation
used in this work is derived from several previously published
models (Jansen & Rit, 1995; Jansen et al., 1993; Lopes et al.,
1974, 1976; Mina et al., 2013; Wilson & Cowan, 1972), although
these models were originally used to describe the dynamics of the
cortex. Two sigmoidal functions are used to describe the nonlinear
dynamical properties of the GPe and STN (Moran et al., 2011),
respectively, which are given by

SGPe (v) =
2λg

1 + e−rgv
− λg (1)

SSTN(v) =
2λs

1 + e−rsv
− λs (2)

where v represents the input of the sigmoid element, i.e. the
LFPs. λg and λs determine the maximum firing rate of the neural
population of theGPe and STN; rg and rs are the slope of the sigmoid
function at the origin, which may denote the effects of dopamine
on the GPe and STN, respectively (Davidson et al., 2014).

The transfer functions of the second-order linear elements are
given as:

GGPe (s) =
Hgτg

τg s + 1
2 (3)

GSTN (s) =
Hsτs

(τss + 1)2
(4)

where s = σ + jω is the Laplace variable. τg and τs represent the
time constants of passive membranes in the GPe and STN. Hg and
Hs are themaximumamplitudes of the GPe and STN synaptic gains,
respectively, that parameterize the inhibition of the GPe and the
excitability of the STN.Hg andHs increase as dopamine is depleted.

In control theory, a transfer function is a mathematical
representation to describe the relationship of the system input and
output. According to the relationship between transfer function
and differential equation, we can use the differential operator d/dt
to replace Laplace operator s. Here dy/dt can be rewritten as ẏ and
d2y/dt2 can be rewritten as ÿ. Thus, the differential equations that
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