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a  b  s  t  r  a  c  t

Picture  fuzzy  set  (PFS),  which  is  a generalization  of  traditional  fuzzy  set  and  intuitionistic  fuzzy  set,
shows  great  promises  of  better  adaptation  to  many  practical  problems  in pattern  recognition,  artificial
life,  robotic,  expert  and knowledge-based  systems  than  existing  types  of fuzzy  sets.  An emerging  research
trend  in  PFS  is development  of  clustering  algorithms  which  can  exploit  and  investigate  hidden  knowledge
from  a  mass  of  datasets.  Distance  measure  is one  of  the  most  important  tools  in clustering  that  determine
the  degree  of relationship  between  two objects.  In this  paper,  we  propose  a generalized  picture  distance
measure  and integrate  it to  a novel  hierarchical  picture  fuzzy  clustering  method  called  Hierarchical  Picture
Clustering  (HPC).  Experimental  results  show  that  the  clustering  quality  of  the proposed  algorithm  is better
than  those  of the  relevant  ones.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Since fuzzy set (FS) [49] was firstly introduced by Zadeh in 1965,
many extensions of FS have been proposed in the literature such as
the type-2 fuzzy set (T2FS) [18], rough set (RS) [24], soft set, rough
soft set and fuzzy soft set [15], intuitionistic fuzzy set (IFS) [3], intu-
itionistic fuzzy rough set (IFRS) [51], soft rough fuzzy set & soft fuzzy
rough set [19], interval-valued intuitionistic fuzzy set (IVIFS) [38]
and hesitant fuzzy set (HFS) [32]. The aim of those extensions is
to overcome the limitations of FS regarding the degree of fuzzi-
ness, the uncertainty of membership degrees, and the existence
of neutrality. Recently, a new generalized fuzzy set called picture
fuzzy set (PFS) has been proposed by Cuong and Kreinovich in Ref.
[6]. The word “picture” in PFS refers to generality as this set is the
direct extension of FS and IFS. In the other words, PFS integrates
information of neutral and negative into its definition so that when
the value(s) of one (both) of those degrees is (are) equal to zero, it
returns to IFS (FS) set. Comparing with IFS, PFS divides the hesitancy
degree into two parts, i.e., refusal degree and neutral degree (see
Definition 1 and Examples 1 and 2 for details). This set shows great
promises of better adaptation to many practical problems in pat-
tern recognition, artificial life, robotic, expert and knowledge-based
systems than some existing types of fuzzy sets.

Definition 1. A picture fuzzy set (PFS) [6] in a non-empty set X is,
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A =
{

〈x, �A (x) , �A (x) , �A (x)〉|x ∈ X
}

,

where �A (x) is the positive degree of each element x ∈ X , �A (x) is
the neutral degree and �A (x) is the negative degree satisfying the
constraints,

�A (x) , �A (x) , �A (x) ∈ [0, 1] , ∀x ∈ X,

0 ≤ �A (x) + �A (x) + �A (x) ≤ 1, ∀x ∈ X.
The refusal degree of an element is calculated as �A (x) = 1 −

(�A (x) + �A (x) + �A (x)),  ∀x ∈ X . In the case �A (x) = 0 PFS returns
to the IFS set, and when both �A (x) = �A (x) = 0, PFS returns to the
FS set. Some properties of PFS operations, the convex combination
of PFS, etc. accompanied with proofs can be referenced in Ref. [6].

Example 1. In a democratic election station, the council issues
500 voting papers for a candidate. The voting results are divided
into four groups accompanied with the number of papers namely
“vote for” (300), “abstain” (64), “vote against” (115) and “refusal of
voting” (21). Group “abstain” means that the voting paper is a white
paper rejecting both “agree” and “disagree” for the candidate but
still takes the vote. Group “refusal of voting” is either invalid voting
papers or bypassing the vote. This example was happened in reality
and IFS could not handle it since the neutral membership (group
“abstain”) does not exist.

Example 2. Personnel selection is a very important activity in
the human resource management of an organization. The process
of selection follows a methodology to collect information about
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an individual in order to determine if that individual should be
employed. The selection results could be classified into 4 classes:
true positive, true negative, false negative, and false positive which
are somehow equivalent to the positive, neutral, negative and
refusal degrees of PFS. Each candidate is ranked according to 4
classes by his ability and suitability for the job, and the final decision
is made based on results of the classes. For example, if two candi-
dates are ranked A-(50%, 20%, 20%, 10%) and B-(40%, 10%, 30%, 20%),
the final decision can be made through the union operator and max-
imum of the positive degree in PFS which returns the value of 50%
(A is selected).

An emerging trend in PFS and other advanced fuzzy sets is the
development of soft computing methods especially clustering algo-
rithms on these sets, which could produce better quality of results
than that on FS. For instance, clustering algorithms on interval
T2FS focusing on uncertainty associated with the fuzzifier were
investigated in Refs. [14,52]. Regarding the IFS set, Pelekis et al.
[23] proposed a clustering approach utilizing a similarity-metric
defined over IFS. Xu and Wu [45] developed the IFCM algorithm
to classify IFS and interval-valued IFS. Son et al. [26] proposed an
intuitionistic fuzzy clustering algorithm for geo-demographic anal-
ysis. Xu and his group developed a number of intuitionistic fuzzy
clustering methods in various contexts [36,37,39,42]. Fuzzy clus-
tering algorithms on other sets namely HFS and PFS were found
in Refs. [4,27]. It is clear from the literature that distance measure
is the most important factor for an efficient clustering algorithm.
The most widely used distance measures for two  FSs A and B on
X =

{
X1, .., XN

}
is the Hamming, Euclidean and Hausdorff metrics

[6]. Because of the FS’s drawbacks, distance measures on other sets
mostly IFS have been proposed. Atanassov [3], Chen [5], Dengfeng
and Chuntian [7], Grzegorzewski [10], Hatzimichailidis et al. [11],
Hung and Yang [12,13], Li et al. [16], Liang and Shi [17], Mitchell
[21], Papakostas et al. [22], Szmidt and Kacprzyk [28–30], Wang and
Xin [35], Xu and Chen [41], Xu and Xia [46], Yang and Chiclana [47]
and Xu [44] presented some distance measures in IFS namely the
(normalized) intuitionistic Hamming and Euclidean distances, and
the (normalized) Hausdorff intuitionistic Hamming and Euclidean
distances. A basic distance measure on PFS has been given by Cuong
and Kreinovich [6] as follows.

dP (A, B)

=

(
1
N

N∑
i=1

(
(�A (xi) −  �B (xi))

p + (�A (xi) − �B (xi))
p + (�A (xi) − �B (xi))

p
))1/p

.

We  recognize that dP (A, B) is a generalization of those in IFS
and FS when �A (x) = 0 and both �A (x) = �A (x) = 0, respectively.
As explained above, the integration of neutral degree �A (x) would
measure information of objects more accurately and increase qual-
ity and accuracy of achieved results. Yet again, to help improving
the performance as motivated by the previous researches on IFS
that tended to combine some basic distance measures into a com-
plex one to improve the generality and accuracy, in this paper
we propose a novel generalized picture distance measure and use
it in a new clustering method on PFS called Hierarchical Picture
Clustering (HPC). The reason for designing a new measure can be
illustrated by an example as follows. Consider that we would like
to measure the truth-value of the proposition G = “through a point
exterior to a line one can draw only one parallel to the given line”.
The proposition is incomplete, since it does not specify the type of
geometrical space it belongs to. In an Euclidean geometric space
the proposition G is true; in a Riemannian geometric space the
proposition G is false (since there is no parallel passing through
an exterior point to a given line); in a geometric space covering
the PFS set (constructed from mixed spaces, for example from a

part of Euclidean subspace together with another part of Rieman-
nian space) the proposition G is indeterminate (true and false in
the same time) [48]. It is obvious that objects, notions, ideas, etc.
can be better measured in PFS than in other types of fuzzy sets.

The main differences of the proposed distance measure with
dP (A, B) and those on IFS such as in Xu [44] are highlighted as
follows.

Firstly,  as being shown above, dP (A, B) is a natural expansion of
the well-known Minkowski distance of order p ≥ 1 between two
points under fuzzy environments. When p = 1 or p = 2, we have the
Manhattan and Euclidean distances, respectively. In the limiting
case of p reaching infinity, we  obtain the Chebyshev distance. The
Minkowski distance has the best performance for numerical data
but works ineffectively with asymmetric binary variables, non-
metric vector objects, etc. [20]. For example, the similarity between
two vectors can be denoted as a cosine measure which is further
used to define a distance [48]. For asymmetric binary variables,
the contingency table, which reflects the matching states between
two objects, is used to compute the distance between asymmetric
binary variables [25]. It is very often that a non-linear function is
adopted as the distance metric for processing non-spherical data
[9]. One of the most common ways to create such the function is
combining the basic distance measures into a complex one so that
the deficiencies of the standalone metrics are settled. This intu-
ition leads to debut of the proposed measure which may  enhance
performance and accuracy of results.

Secondly, the proposed measure is a combination of the Ham-
ming, Euclidean and Hausdorff distances. It is different to dP (A, B)
which in essence is the normalized form of well-known Minkowski
distance of order p ≥ 1. In the next section, we will explain why
the hybridization should be made and emphasize on the advan-
tages and disadvantages of using the proposed measure. However,
it is noted that the proposed distance measure is a generalization
version of dP (A, B).

Thirdly, the proposed distance measure is different to those on
IFS such as in Xu [44] in many aspects. Let us take some examples. In
Ref. [44], Xu generalized the intuitionistic Hamming and Euclidean
distances of Szmidt and Kacprzyk [28] as below.

dd (A, B)

=

(
1

2N

N∑
i=1

(
|�A (xi) − �B (xi) |˛ + |�A (xi) − �B (xi) |˛ + |�A (xi) − �B (xi) |˛

))1/˛

.

He then defined several similarity measures from the above dis-
tance function, for instance:

s (A, B)

= 1 −

(
1

2N

N∑
i=1

(
|�A (xi) −  �B (xi) |˛ + |�A (xi) − �B (xi) |˛ + |�A (xi) − �B (xi) |˛

))1/˛

,

s (A,  B)

= 1 −

⎛
⎜⎜⎜⎜⎝

N∑
i=1

(
|�A (xi) − �B (xi) |˛ + |�A (xi) − �B (xi) |˛ + |�A (xi) − �B (xi) |˛

)
N∑

i=1

(
|�A (xi) + �B (xi) |˛ + |�A (xi) + �B (xi) |˛ + |�A (xi) + �B (xi) |˛

)

⎞
⎟⎟⎟⎟⎠

1/˛

Even though d (A, B) is quite similar to dP (A, B), we  recog-
nize that d (A, B) is designed on the basis of IFS which means
�A (x) + �A (x) + �A (x) = 1 while dP (A, B) is the distance on PFS sat-
isfying 0 ≤ �A (x) + �A (x) + �A (x) ≤ 1. Indeed, it is not intuitive and
logical when taking the difference between �A (x) and �B (x) since
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