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a b s t r a c t

The problem of global dissipativity for memristor-based inertial networks with time-varying delay of
neutral type is investigated in this paper. Based on a proper variable substitution, the inertial system is
transformed into a conventional system. Some sufficient criteria are established to ascertain the global
dissipativity for the aforementioned inertial neural networks by employing analytical techniques and
Lyapunov method. Meanwhile, the globally exponentially attractive sets and positive invariant sets
are also presented here. Finally, numerical examples and simulations are given out to corroborate the
effectiveness of obtained results.
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1. Introduction

Since Hopfield neural network was implemented by the
integrated circuit in 1984, many scholars paid their attention
to investigate the dynamical characteristics and applications of
neural networks with great enthusiasm (Abe, 1993; Berezansky,
Braverman, & Idels, 2014; Cao & Wang, 2005; Rakkiyappan,
Lakshmanan, Sivasamy, & Lim, 2016a; Zeng, Wang, & Liao, 2003).
A comprehensive review for recurrent neural network has been
presented in Zhang, Wang, and Liu (2014). The adaptive control
problem for uncertain nonaffine nonlinear system with input
saturation has been discussed with neural networks (Esfandiari,
Abdollahi, & Talebi, 2015). The global exponential stability of
delayed complex-valued neural networks with impulsive effects
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was investigated in Song, Yan, Zhao, and Liu (2016). In addition,
the dynamics of some practical systems not only depend on the
delay of state but also relies on the delay of state derivative, and
such systems are called as neutral systems. They are frequently
encountered in many fields such as population ecology, automatic
control, and heat exchange, etc. (Brayton, 1966; Kuang, 1993).
Lakshmanan, Senthilkumar, and Balasubramaniam (2011) gave
out the robust stability analysis for delayed neutral systems
with nonlinear perturbations by virtue of convex combination
and integral inequalities techniques. By constructing Lyapunov
functional, the global stability for a class of neutral neural
systems was discussed (Arik, 2014). Based on nonnegative system,
the stability problem for a class of linear time-varying neutral
systems was discussed as well (Mazenc, 2015). The global
Lagrange stability of delayed neutral neural networks with delays
was considered in Jian and Wang (2015) and Luo, Zeng, and Liao
(2011).

Compared to attention given to neural networks with first-
order derivative of states, little attention has been given to the
inertial neural networks. However, it also has great significance
to consider neural network with inertial item as the inertial
item can be viewed as powerful tool for generating bifurcation
phenomenon and chaos (Babcock & Westervelt, 1986; Xing, Li, &
Shu, 2012). Actually, there exist evident engineering and biological
backgrounds for bringing an inertial term into a neural system.
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For example, it has been proved that the membrane of a hair
cell can be realized by equivalent circuits with an inductance
in semicircular canals of certain animals (Angelaki & Correia,
1991; Ashmore & Attwell, 1985). Scholars have proved that the
charge or flux q of an electron element with inertial can be
inertial with the tendency to be unchanged (Wang et al., 2010).
And it has been proved that the dynamical behaviors would be
more complex when the inertial item is introduced into neural
networks (Babcock&Westervelt, 1986). The existence and stability
analysis for periodic solutions of inertial bi-directional associative
memory(BAM) neural networks were presented in Ke and Miao
(2013) and Zhang, Li, Huang, and Tan (2015). Song and Xu
considered the problem of stability as well as Bogdanov–Takens
bifurcation for inertial coupling system, and some interesting
results were obtained (Song & Xu, 2014). Based onmatrix measure
method and inequality techniques, the exponential stability and
synchronization problem of inertial neural network were studied
(Cao & Wan, 2014). The exponential stability of delayed inertial
BAM neural networks was considered by using impulsive control
(Qi, Li, &Huang, 2015). Some sufficient conditionswere established
in the terms of linear matrix inequalities to ascertain the coupled
reaction–diffusion inertial neural networks to be synchronized
(Dharani, Rakkiyappan, & Park, 2016).

As it is pointed out in Liao and Wang (2003), the dissipativity
is a generalization of Lyapunov stability, and the dissipative
theory can offer an effective framework for stability analysis.
Moreover, it also builds strong connections among physics,
control engineering and system theory, and it has been applied
to norm estimation, chaos, and robust control, etc. Increasing
scholars have paid their attention to the dissipativity analysis
of system (Song & Zhao, 2005; Wang, She, Zhong, & Cheng,
2016; Wang, Zhang, & Ding, 2015; Wu, Li, & Huang, 2011; Wu,
Shi, Su, & Chu, 2013). Some sufficient criteria ascertaining the
global dissipativity for delayed neural network were presented
in the form of linear matrix inequality (Cao, Yuan, Ho, & Lam,
2006). Based on Filippov solutions, the problem of dissipativity
and quasi-synchronization of neural networks with time delay
and discontinuous activations have been considered (Liu, Chen,
Cao, & Lu, 2011). The global dissipativity analysis for T-S
fuzzy neural networks with interval delays was discussed in
Muralisankar, Gopalakrishnan, and Balasubramaniam (2012).
Stochastic dissipativity for discrete-time neural networks was
considered in Song (2011). By using Filippov theory andM-matrix,
the authors considered the global dissipativity for neural networks
with time delay and discontinuous functions (Duan & Huang,
2014).

In 1971, base on the completeness of variable statistic and
symmetry of circuit variables, Professor Chua predicted the
existence of the fourth fundamental circuit element called as
memristor (abbreviation of memory resistor), which depicts the
relation between the charge and flux (Chua, 1971). He also pointed
out that the memristor could not be replaced by the other
three elements: capacitor, resistor and inductor. However, the
memristor failed to attract much attention from scholars until its
prototype was realized by the research team of Hewlett–Packard
Lab in 2008 (Strukov, Snider, Stewart, & Williams, 2008; Tour &
He, 2008). The value of memristor is called memristance which
not only depends on the polarity andmagnitude of voltage applied
on it, but also depends on the time duration. When the voltage is
turned off, the memristance maintains on the most recent value
until the voltage is turned on. It has been found that memristor
devices possess some potential applications, for example, the
service life of phone battery will be extended greatly and synapsis
behaviors can be simulated by memristor devices. Based on
memristors, the powerful brain like computer may be realized.
When resistors in neural networks are replaced by memristors,

memristor-based neural networks are conceived. And memristive
networks not only persist the properties as conventional neural
network, but also possess some peculiar properties, which make
memristive neural networks with better applications, such as,
imitating the human brain. Recently, the dynamics analysis of
memristive neural network has become a hot topic of research (Li
& Cao, 2015; Wang, Li, Huang, & Duan, 2013; Wu & Zeng, 2012;
Yang, Cao, & Yu, 2014; Yang, Guo, & Wang, 2015; Zhang & Shen,
2013, 2014). The global stability and stabilization of memristive
neural networks were discussed (Wang et al., 2013; Zhang &
Shen, 2014). The problem of synchronization for memristor-
based neural networks was also investigated (Li & Cao, 2015;
Wu, Wen, & Zeng, 2012; Yang, Cao, & Qiu, 2015; Yang et al.,
2014; Zhang & Shen, 2013). And several easy-checked criteria
were provided in Cao and Li (2017) to ascertain the fixed-time
synchronization for delayedmemristor-based neural networks. By
employing control theory and non-smooth analysis, Wu and Zeng
studied the Lagrange stability for delayed memristor-based neural
network (Wu&Zeng, 2014). The global dissipativity formemristor-
based neural networks was also investigated in Guo, Wang, and
Yan (2013) and Li, Rakkiyappan, and Velmurugan (2015). The
stability analysis for delayed memristive complex-valued neural
networks was implemented in Rakkiyappan, Velmurugan, Rihan,
and Lakshmanan (2016b).

As far as we know, the problem of global dissipativity for
memristor-based inertial neural networks with neutral delays is
challenging and still open. We will attempt to do some effort
to shorten the gap. The main contributions of our paper can be
summed up as follows:

(i) The circuit implementation of inertial neural networks with
time delay is given out.

(ii) The memristor-based neural network with both inertial item
and neutral delay is considered, and there are few literatures if
none discussed the system. Moreover, the activation function
discussed here is not only nonlinear but also unbounded.

(iii) We consider the global dissipativity which is a generalization
of Lyapunov stability. And the sufficient criteria obtained here
can guarantee globally exponentially dissipative. Moreover,
the sufficient criteria are easy to be checked by MATLAB.

(iv) ẋ(t) is introduced into the Lyapunov functional, and a new
Lyapunov functional is proposed.

The remainder of the paper is arrayed as follows: Model
description and preliminaries are placed in Section 2. The main
results are exhibited and proved in Section 3. Two numerical
examples and simulations are given out to verify effectiveness of
our results in Section 4. In Section 5, some conclusions and future
research topics are presented.

Notations: In this paper, Rn represents the n-dimensional
Euclidean space. Let E be appropriate dimension identity matrix
and AT be the transpose of matrix A. |A| = (|aij|)n×n. For a matrix,
∗ represents the symmetric elements in a symmetric matrix.
N∗

= {1, 2, . . . , n}. C([−τ , 0]; Rn) denotes a class of continuous
mapping set from [−τ , 0] to Rn. A ≺ 0 means that A is a negative
definite matrix. For ϕ ∈ C([−τ , 0]; Rn), ∥ϕ∥ , sup−τ≤s≤0 ∥ϕ(s)∥.
x ∈ Rn

\ Ω means x ∈ Rn but x ∉ Ω . Ωε is the ε-neighborhood
ofΩ .

2. Preliminaries

Firstly, we provide the circuit of inertial neural networks in
Fig. 1 such that the inertial neural network can bewell understood.
Based on Kirchhoff’s current law, the equation of the ith subsystem
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