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a b s t r a c t

Reservoir computing became very popular due to its potential for efficient design of recurrent neural
networks, exploiting the computational properties of the reservoir structure. Various approaches, ranging
from appropriate reservoir initialization to its optimization by training have been proposed. In this paper,
we extend our previous work and focus on short-term memory capacity, introduced by Jaeger in case
of echo state networks. Memory capacity has been previously shown to peak at criticality, when the
network switches from a stable regime to an unstable dynamic regime. Using computational experiments
with nonlinear ESNs, we systematically analyze the memory capacity from the perspective of several
parameters and their relationship, namely the input and reservoir weights scaling, reservoir size and its
sparsity. We also derive and test two gradient descent based orthogonalization procedures for recurrent
weights matrix, which considerably increase the memory capacity, approaching the upper bound, which
is equal to the reservoir size, as proved for linear reservoirs. Orthogonalization procedures are discussed
in the context of existing methods and their benefit is assessed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Memory is a crucial component of any neural system for its
functioning in the world. On long timescales, the memories are
likely to be stored in synaptic weights. On shorter timescales, the
short-term memory (STM) is conjectured to be due to transient
network activity. Specifically, stimulus perturbations can cause ac-
tivity in a recurrent network long after the input has been removed,
and the research hypothesizes that cortical networks may rely
on transient activity to support STM (Buonomano & Maass, 2009;
Jaeger, 2004; Maass, Natschläger, & Markram, 2002). Understand-
ing the role of memory requires determining the limits of STM and
characterizing the effects of various network parameters on that
capacity (e.g. the network size, topology, and input statistics).1

In the domain of recurrent neural networks that possess STM
capacity, reservoir computing (RC) (Lukoševičius & Jaeger, 2009)
has turned out to be an efficient alternative to computationally
demanding gradient-based learning algorithms. RC is based on
an appropriate initialization of the input and recurrent part
(reservoir) of the network, and only the output connections
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1 Of course, memory is not the only neural function; there are other complex,
spatio-temporal computations, that neural circuits have to perform on the inputs
(Dambre, Verstraeten, Schrauwen, & Massar, 2012).

(readout) are trained in supervised way. RC has been used to
quantify the STM capacity in several network architectures, such
as spiking networks (Legenstein &Maass, 2007; Maass et al., 2002;
Wallace, Hamid, & Latham, 2013), continuous-time networks
(Büsing, Schrauwen, & Legenstein, 2010; Hermans & Schrauwen,
2010), and discrete-time networks (Jaeger, 2001; White, Lee, &
Sompolinsky, 2004), including the delayed reservoirs (Grigoryeva,
Henriques, Larger, &Ortega, 2015). These analyses have shown that
even under optimal conditions, the STM capacity (i.e., the length of
the stimulus the network is able to recover) scales linearlywith the
number of nodes in the reservoir.

Significant effort has been devoted to the quantification of
the degree to which different inputs lead to different network
states (Büsing et al., 2010; Jaeger, 2001; Legenstein &Maass, 2007;
Maass et al., 2002; Strauss, Wustlich, & Labahn, 2012; Wallace
et al., 2013). This condition should allow the system to recover
the original input by inverse computation. In discrete echo state
networks (ESNs), the uniqueness of trajectories is guaranteed by
the echo state property (ESP) (Jaeger, 2001; Manjunath & Jaeger,
2013) which, however, does not ensure robustness and output
computations can be sensitive to small perturbations. A slightly
more robust property looks at the conditioning of the reservoir
matrix describing how the system acts on an input sequence
(Strauss et al., 2012). Strauss et al. (2012) show that the STM
capacity still scales linearly with the network size.

One of the factors affecting the network performance regarding
the STM is the reservoir connectivity. A number of numerical and
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theoretical studies have shown that, in case of randomly connected
spiking networks, STM is much longer in the neutrally stable
regime than in the converging or diverging regimes (Bertschinger
& Natschläger, 2004; Büsing et al., 2010; Legenstein & Maass,
2007; Maass, Legenstein, & Bertschinger, 2005). However, all
these studies assumed low connectivity. Recent work has revealed
that in case of higher reservoir connectivity, the STM capacity is
reduced (Wallace et al., 2013). In contrast, linear ESNs with high
connectivities (appropriately normalized) (Büsing et al., 2010) can
have relatively large STM capacities (reaching the number of nodes
in the network) (Strauss et al., 2012).

The optimal conditions leading to maximixed STM have been
related to dynamical stability properties of the reservoir. In
Bertschinger and Natschläger (2004) it was found that networks
were able to exhibit long memories if they operated near the edge
of chaos, at the critical border between a stable (ordered) and an
unstable (chaotic) dynamics regime. The idea that temporal mem-
ory is longest near the edge of chaos was confirmed in subsequent
studies (Büsing et al., 2010; Legenstein &Maass, 2007;Maass et al.,
2005). In the context of ESNs, Jaeger (2001) defined and quanti-
fied the STM by short-term memory capacity (MC) that measures
the network ability to reconstruct the past information from the
reservoir on the network output by computing correlations.

In our previouswork (Barančok & Farkaš, 2014)we investigated
MC in the context of criticality, and assessed it for various input
data sets, both random and structured, and showed how the
statistical properties of data and various network parameters affect
ESN performance. We estimated MC at the edge of chaos (by
computing the Lyapunov exponent, LE, explained in Section 2.5)
using a nonlinear ESN, in order to compare results with Boedecker,
Obst, Lizier, Mayer, and Asada (2012). Since it is difficult to
initialize ESNs with required LEs, in this work, we instead
manipulate spectral (and other) parameters of ESNs whose effects
on MC, and their relationships, have not yet been systematically
investigated. To make the analysis simpler, we restrict ourselves
to using a random scalar input driving the ESN. We also introduce
two reservoir orthogonalization procedures that lead to an almost
maximal increase of MC under certain conditions.

The remaining parts of the paper are organized as follows.
Section 2 provides more technical details relevant for our work.
Section 3 contains results of experiments. Section 4 concludes
the paper. Appendix provides mathematical details of the two
reservoir orthogonalization procedures.

2. Related background

Here we recollect relevant information related to ESNs and this
paper, namely the memory capacity, reservoir initialization, its
orthogonalization and estimating reservoir’s criticality (dynamical
stability).

2.1. Echo state network model

Fig. 1 shows the ESN model with a single input u(t), N reser-
voir neurons and L output neurons that we consider. Reservoir
activations x(t) = (x1(t), . . . , xN(t))⊤ and output activations
y(t) = (y1(t), . . . , yL(t))⊤ are updated according to ESN dynam-
ics given by the formulas

x(t) = f(winu(t) + Wx(t − 1)) (1)

y(t) = fout(Woutx(t)) (2)

where f : RN
→ RN and fout : RN

→ RL are suitable acti-
vations functions, we use f = tanh (applied element-wise) and
linear readout fout = id. win is the input weight vector, W and

Fig. 1. Illustration of an ESN architecture with a single input.

Wout are recurrent and outputweightmatrices, respectively. Read-
out weights are computed as Wout

= UX+, where the matrix U
is formed by concatenated desired output vectors (reconstructed
past inputs with various delays), and X+ is the pseudoinverse ma-
trix of concatenated state vectors.

2.2. Memory capacity

Jaeger (2001) introduced (short term)memory capacity (MC), as
ameasure for the ability of the reservoir to store and recall previous
inputs fed into the network. Jaeger defined it as

MC =

kmax
k=1

MCk =

kmax
k=1

cov2(u(t − k), yk(t))
var(u(t)) · var(yk(t))

(3)

where cov denotes covariance (of the two time series), var means
variance, kmax = ∞, u(t − k) is the input presented k-steps
before the current input, and yk(t) = wout

k x(t) = ũ(t − k) is its
reconstruction at the network output (using linear readout), where
wout

k is the weight vector of kth output unit. The computation of
MC is approximated using kmax = L (i.e. given by the number
of output neurons). The concept of MC is based on network’s
ability to retrieve the past information (for various delays k)
from the reservoir using the linear combinations of reservoir unit
activations (which is quantified by MCk). The reconstructed past
inputs are computed at ESN output.2

Jaeger computed MC in ESNs assuming also neural connections
between input and output neurons. Following Boedecker et al.
(2012), where a number of experiments with MC were performed,
we did not assume direct connections, in order to be able to
compare the results. Thedifference in definitiondoes not, however,
render both approaches incompatible, since one definition can be
seen as a special case of the other. A reservoir with (N + 1) units
with the last neuron serving as a mere delay of the input can
mimic the behavior of a reservoirwhich allows direct input–output
connections. This means that in case of Boedecker’s definition, the
maximum MC is N − 1 (or N − MCk=0 ≈ N − 1 to be precise).
Jaeger (2001) proved that the memory capacity for recalling an
i.i.d. (independent, identically distributed) input by an N-unit ESN
with identity activation function is bounded by N .

2.3. Reservoir initialization

Memory capacity obviously depends on the reservoir prop-
erties. Lukoševičius (2012) and Lukoševičius and Jaeger (2009)
provide a nice and clear overview of practical tips on reser-
voir initialization in ESNs. The authors suggested that the gen-
erated reservoirs be big (to ensure many input signal transfor-
mations), sparse (to enforce loose coupling between activation

2 Defining MCk as a squared correlation coefficient implies that negative
correlations (due to negated reconstructions of the input signal, which is symmetric
around zero) are equally considered to contribute to memory capacity.
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