
Neural Networks 83 (2016) 1–10

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Simbrain 3.0: A flexible, visually-oriented neural network simulator
Zachary Tosi a,∗, Jeffrey Yoshimi b
a Cognitive Science, Complex Systems, Indiana University Bloomington, United States
b Cognitive and Information Sciences, University of California, Merced, United States

a r t i c l e i n f o

Article history:
Received 4 December 2015
Received in revised form 4 July 2016
Accepted 13 July 2016
Available online 29 July 2016

Keywords:
Neural networks
Simulator
Education
Network visualization

a b s t r a c t

Simbrain 3.0 is a software package for neural network design and analysis, which emphasizes flexibility
(arbitrarily complex networks can be built using a suite of basic components) and a visually rich,
intuitive interface. These features support both students and professionals. Students can study all of
the major classes of neural networks in a familiar graphical setting, and can easily modify simulations,
experimenting with networks and immediately seeing the results of their interventions. With the 3.0
release, Simbrain supports models on the order of thousands of neurons and a million synapses. This
allows the same features that support education to support research professionals, who can now use the
tool to quickly design, run, and analyze the behavior of large, highly customizable simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Simbrain 3.0 (http://www.simbrain.net/), a major revision and
overhaul of Simbrain 2.0 (Yoshimi, 2008), is an open source
neural network tool1 which can simulate many different network
architectures using a visually rich and intuitive interface. This
makes it ideal for education and rapid prototyping. Simbrain 3.0
has greatly improved performance: it can handle thousands of
model neurons and hundreds of thousands of synaptic connections
on a standard desktop PC. Thus Simbrain is increasingly viable as a
research tool, particularly in computational neuroscience.

Simbrain’s flexibility is based on itsmodular ‘‘tool-kit’’ structure
and scripting abilities. In the last few decades, artificial neural
networks (ANNs) have becomeprominent inmany fields, including
machine learning, neuroscience, and psychology. The thousands
of models that have been developed in these fields are largely
based on a common core of basic components and functions.
Simbrain supports most of these core components as graphical
elements and allows them to be combined in arbitrary ways. Thus
many existing models can be developed ‘‘out of the box’’ using
Simbrain’s graphical user interface (GUI). The intention is to create
a sandbox for maximally permissive experimentation. In cases
where more custom functions are needed, Simbrain provides a

∗ Corresponding author.
E-mail addresses: ztosi@umail.iu.edu (Z. Tosi), jyoshimi@ucmerced.edu

(J. Yoshimi).
1 Using the GNU general public license.

powerful scripting interface. In these ways, just about any modern
neural network model at the level of abstraction of point neurons
can be implemented in Simbrain.

Simbrain’s ease of use is based on its graphical interface, which
allows individual neurons and synapses, and groups of neurons
and synapses, to be created, edited, and connected together using
a familiar point and click interface, as well as a set of keyboard
shortcuts that, in our experience, are quickly mastered. One of the
goals of Simbrain is to make neural networks as accessible (and
manipulatable) as possible, in terms of their behavior, dynamics,
analysis, and interactions with an environment. Users can modify
parameters of running simulations and observe the effects of these
interventions in real-time.

These features make it easy to use Simbrain in a broad range
of educational settings, with students of different ages and levels
of expertise. In fact, an informal design goal of the team is to
make it possible for children and young adults to build and study
neural networks. Simbrain has been used at the university level
at the University of Sydney (Australia), LMU Munich (Germany),
University of Indiana Bloomington (USA), and at the University of
California, Merced (USA), among others, and the team has been
seeking funding to develop educational modules for use in K-12
settings.

However, Simbrain is not exclusively an educational tool. It
is also well-suited to research professionals developing more
complex models. It has been used by the second author to
study the dynamics of small networks embedded in virtual
environments (Hotton & Yoshimi, 2011; Yoshimi, 2014), but with
the improvements of 3.0 the possibilities have expanded. In as

http://dx.doi.org/10.1016/j.neunet.2016.07.005
0893-6080/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2016.07.005
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.07.005&domain=pdf
http://www.simbrain.net/
mailto:ztosi@umail.iu.edu
mailto:jyoshimi@ucmerced.edu
http://dx.doi.org/10.1016/j.neunet.2016.07.005


2 Z. Tosi, J. Yoshimi / Neural Networks 83 (2016) 1–10

yet unpublished work, the first author has drawn on Simbrain’s
enhanced performance capacities and extensibility to study the
mechanisms of plasticity that are needed to account for the
behavior and structure of cortical microcircuits observed in vitro
and in vivo. In this kind of work, instantaneous visualizations of
network data can inspire newhypotheses and lines of research, and
make users immediately aware of information about a network
which might otherwise go unnoticed, due to the often painstaking
process of creating useful data visualizations. In fact, a chance
observation of changes in synaptic weight distributions (via
Simbrain’s histogram plot) was the impetus for the first author’s
line of research.

Thus in a research/professional context this rich user feedback
promotes a development cycle involving some or all of the
following steps: (1) Come up with an idea for a novel ANN
architecture. (2) Implement the idea using the Simbrain GUI
(and possibly scripting). (3) Refine rapidly using the GUI’s visual
feedback. (4) Fine tune the simulation and potentially develop it
without the GUI, using Simbrain as a library.

Simbrain is programmed in Java and thus runs on any ma-
chine with a Java Virtual Machine (JRE/JDK 8 or higher re-
quired). Neural network graphics are based on the Piccolo library
(http://www.cs.umd.edu/hcil/piccolo/), a zoomable scene-graph
based library built on top of the Java2D API.2 The source code is
hosted on git-hub (https://github.com/simbrain/simbrain) and ef-
forts have been made to produce a clean, readable codebase.

Simbrain has been in continuous development since the late
1990s. Its original purpose was to provide a visually oriented
framework for studying neural networks (few such programswere
available at the time). Since then many more neural network
packages have emerged, including several that feature rich
visualization capacities (Aisa, Mingus, & O’Reilly, 2008; Bekolay
et al., 2013; Gewaltig & Diesmann, 2007; Goodman & Brette,
2008).3 Two of the most similar, in terms of providing a point-
and-click GUI for creating neural networks, are Emergent and
Nengo. However, these packages have been designed around
specific computational frameworks (the Leabra framework in
the case of Emergent; the Neural Engineering Framework in
the case of Nengo). Though both frameworks are flexible
(e.g. backpropagation is available in Emergent), each focuses on
a specific class of neuro-computational models. A primary design
goal of Simbrain, by contrast, has been to provide a domain general
framework for creating and combining arbitrary neuron, synapse,
and network models. Programs like Brian and Nest can produce
detailed visualizations, but are not fundamentally GUI-based
programs. With the emergence of HTML5, beautiful visualizations
are more readily accessible directly in the browser, prompting
some to create web-based interactive neural networks.4 However,
thus far web-based visualizations have been oriented towards
single demonstrations rather than general purpose simulation
frameworks.

Simbrain’s basic graphical user interface is a desktop (see Fig. 1)
with components (neural networks, virtual environments, graphs,
etc.) that can be coupled to one another.5 Network panels allow

2 Piccolo’s main design features have been incorporated into Java FX (the latest
iteration of Java’s graphics platform), and plans are to gradually port Simbrain to
Java FX.
3 Also see (Krenek et al., 2014) and the list here: https://grey.colorado.edu/

emergent/index.php/Comparison_of_Neural_Network_Simulators.
4 Some examples: http://cs.stanford.edu/people/karpathy/convnetjs/, http://

ncase.me/neurons/, and http://scs.ryerson.ca/∼aharley/vis/.
5 All of the screenshots in this paper can be easily reproduced, using simulations

that are included with the latest 3.01 release of Simbrain. Figs. 1 and 2 correspond
to workspaces backpropLetters.zip and spkExamples.zip. Figs. 5, 6, 7, 9, and 10
correspond to scripts CorticalBranching.bsh, RealNeuralNetAdEx.bsh, braitenberg.bsh,
elmanPhonemes.bsh, and SORN.bsh.

users to build networks and watch the changing dynamics of
neurons and (in some cases) synapses in real-time, alongside
corresponding changes in graphs, tables, and virtual environments.
The GUI can be disabled (or other GUI objects hidden) to increase a
simulation’s computational speed and efficiency. Simbrain’s logical
code is separate from its GUI code and it can be used as a library
independently of the GUI.

The shift from Simbrain 2.0 to Simbrain 3.0 focused on scope
and scalability/performance. Improved performance made larger-
scale simulations possible, which in turn made it possible to
add new network types and training algorithms. 3.0 introduces
aggregated groups of neurons and synapses (‘‘neuron groups’’ and
‘‘synapse groups’’) which provide a convenient way to manipulate
many neurons or synapses at once. Simbrain’s data analysis
and visualization software has also been improved. Many of
the enhancements have focused on supporting more biologically
plausible neural network models, allowing for the simulation of
structures like cortical microcircuits in Simbrain.

This article overviews the full scope of Simbrain 3.0’s ca-
pabilities and features. We first consider its core elements:
neurons, synapses, plasticity rules, synaptic transmission rules,
neuron groups, synapse groups, and subnetworks. We then con-
sider its performance features, graphical interface design, worlds,
and scripting. Examples of applications are given throughout. We
end by discussing future directions for Simbrain.

2. Core architecture

2.1. Neurons and synapses

Simbrain supports a wide variety of model neurons (both
connectionist and spiking), and rules for synaptic plasticity
and transmission. The code was designed with flexibility and
extendability in mind. Custom extensions are possible and
encouraged. The easiest way to customize the code is via scripts
(using beanshell, a type of interpreted Java), though efforts have
also been made to make it easy to modify the code directly
via the API.6 Simbrain takes an object-oriented approach to the
representation of common ANN constructs like neurons and
synapses, as well as the rules governing their behavior. Most
customizations can be implemented as a subclass of a Simbrain
core class. This results in an intuitive, easy-to-extendAPIwhere the
conceptual constructs constituting neural networks have a direct
relationship to classes in Simbrain.

Neurons correspond to objects with general properties, includ-
ing an activation value and a boolean value indicating a spike
or action potential (in effect, a Dirac or Kronecker delta function
depending upon the temporal framework) has occurred. During
network updates the neuron class typically handles procedures re-
lating to the calculation of weighted incoming sums from synapses
and the appropriate transfer of activation states (including spik-
ing behavior if applicable) to and from synchronizing buffers. The
procedure for determining the neuron’s state at the next time-step
(and thus its overall behavior) is delegated to the neuron’s
update rule object. For instance, specific point neuron models

6 Custom neurons, synapses, subnetwork types, neuron group types, update
methods, gui widgets, and overall simulation configurations can be created using
custom scripts. Over 20 sample scripts illustrating these different types of extension
(and serving as easy-to-modify templates) are included. Adding new neuron,
synapse, neuron group, and many other object types directly to the Simbrain code
is also fairly easy. In the most common case (neuron types), it only involves adding
two new files following a standard and easy-to-understand template; the process
is described here: see https://github.com/simbrain/simbrain/wiki.

http://www.cs.umd.edu/hcil/piccolo/
https://github.com/simbrain/simbrain
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://ncase.me/neurons/
http://ncase.me/neurons/
http://ncase.me/neurons/
http://ncase.me/neurons/
http://scs.ryerson.ca/~aharley/vis/
http://scs.ryerson.ca/~aharley/vis/
http://scs.ryerson.ca/~aharley/vis/
http://scs.ryerson.ca/~aharley/vis/
http://scs.ryerson.ca/~aharley/vis/
http://scs.ryerson.ca/~aharley/vis/
https://github.com/simbrain/simbrain/wiki


Download English Version:

https://daneshyari.com/en/article/4946733

Download Persian Version:

https://daneshyari.com/article/4946733

Daneshyari.com

https://daneshyari.com/en/article/4946733
https://daneshyari.com/article/4946733
https://daneshyari.com

