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a b s t r a c t

There are compelling computational models of many properties of the primate ventral visual stream, but
a gap remains between the models and the physiology. To facilitate ongoing refinement of these models,
we have compiled diverse information from the electrophysiology literature into a statistical model of
inferotemporal (IT) cortex responses. This is a purely descriptivemodel, so it has little explanatory power.
However it is able to directly incorporate a rich and extensible set of tuning properties. So far, we have
approximated tuning curves and statistics of tuning diversity for occlusion, clutter, size, orientation,
position, and object selectivity in early versus late response phases. We integrated the model with the V-
REP simulator, which provides stimulus properties in a simulated physical environment. In contrast with
the empirical model presented here, mechanistic models are ultimately more useful for understanding
neural systems. However, a detailed empirical model may be useful as a source of labeled data for
optimizing and validating mechanistic models, or as a source of input to models of other brain areas.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The primate inferotemporal (IT) cortex is a high-level visual
area in the ventral visual stream. Its neurons respond strongly to
complex visual features, and these responses exhibit tolerances to
many stimulus transformations. IT has strong connections with ar-
eas around the hippocampus, and also with the prefrontal cortex
(Webster, Bachevalier, & Ungerleider, 1994). IT provides informa-
tion for object recognition (e.g. Hung, Kreiman, Poggio, & DiCarlo,
2005; Tanaka, 1996). Characterization of the visual representa-
tion in IT is important for understanding the mechanisms through
which this representation emerges from lower-level visual fea-
tures, and also for understanding the visual signals available to
other areas.

As a step in understanding the visual representation in IT in
more detail, we sought to combine a wide range of information
from the literature into a coherent statistical model of IT activity.
In contrast with network models of IT (Rolls, 2012; Serre,
Kreiman et al., 2007), which offer mechanistic explanations for
IT tuning properties, we developed a purely descriptive model.
Its advantages are that it incorporates a wide range of response
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properties, and that it can be extended in a straightforward way
to incorporate more response properties as needed. On the other
hand, since it does not incorporate realistic mechanisms, it is less
likely than a realistic mechanistic model to extrapolate accurately
beyond tuning properties that are not explicitly incorporated.

Given this limitation, the main intended use of the model is to
support development of future mechanistic models. In particular,
we expect that it can serve as a source of labeled data with which
to refinemechanistic ventral-streammodels. Previousmechanistic
models of the ventral stream have already been quite successful,
but we expect that further improvements may be facilitated by
taking a step back and more thoroughly modeling IT response
statistics, as we do here. However, we also emphasize that
although we have tried to incorporate diverse data into the model,
we have so far only been able to address a small fraction of the IT
literature.

1.1. Previous IT models

The best-known previous models of the inferotemporal cortex
(IT) include the Neocognitron (Fukushima, 1980), HMAX (Serre,
Kreiman et al., 2007), and VisNet (Rolls, 2012). Convolutional net-
works trained for object categorization have also been considered
as ITmodels (Hong, Yamins,Majaj, &DiCarlo, 2016; Khaligh-Razavi
& Kriegeskorte, 2014; Yamins et al., 2014). Herewe briefly describe
these models and their limitations.

The HMAX model, a successor of the Neocognitron model,
is composed of a hierarchical series of alternating ‘simple’ and
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‘complex’ cell layers designed to model rapid feed-forward visual
processing. Simple cells extract features, while complex cells pool
extracted features to develop tolerances to both spatial and scale
transformations. With increasing depth, both the complexity of
the features and tolerances to these transformations increase.
HMAX is consistent with many properties of IT responses, such
as orientation and clutter tuning (Serre et al., 2005). It performs
simple object-recognition tasks at human performance levels
(Serre, Oliva, & Poggio, 2007). Limitations of HMAX have been
discussed extensively by Robinson and Rolls (2015) (for example, it
responds similarly to scrambled and unscrambled images of faces).
Further limitations include that HMAX activity does not reflect
category distinctions in the sameway as IT activity (Khaligh-Razavi
& Kriegeskorte, 2014), and that its performance in challenging
object classification tasks is poor (Cadieu et al., 2014).

VisNet is also a well-established IT model that has been
extensively developed and compared with IT (Robinson & Rolls,
2015; Rolls, 2012). It uses a learning rule with a memory trace that
has the effect of correlating responses to stimuli that are presented
close together in time. This can introduce realistic invariances
to position, scale, and rotation, depending on the pattern of
stimulus presentations. It is argued that (for example) position-
invariant responses to a certain object could emerge naturally
as an object moves across the visual field, and size-invariant
responses could emerge as an object recedes from the viewer.
Position, size, and rotation invariance have all been established in
VisNet models (Rolls, 2012). However, a limitation is that different
stimulation protocols have been used in each case, and these tests
have not involved naturalistic scenes and eye-movement patterns.
VisNet does not produce responses that are realistically correlated
across categories (Khaligh-Razavi & Kriegeskorte, 2014). Its object
categorization performance is also comparable to that of HMAX
(Robinson & Rolls, 2015), far below human performance.

Deep convolutional neural networks (LeCun, Bottou, Bengio,
& Haffner, 1998) are artificial neural networks with sparse, local
connections. They were loosely inspired by the visual cortex, and
have since demonstrated human-level performance in core object
recognition (He, Zhang, Ren, & Sun, 2015). They are physiologically
unrealistic in a number of ways. For example, they are typically
trained with backpropagation, and their weight updates are
non-local, in that weights are shared across feature maps. (This
weight sharing is sometimes relaxed or eliminated (Bishop, 2006),
but it is very useful for making efficient use of available training
data. This is a reasonable accommodation, since the networks
are trained with fairly small datasets compared to the enormous
volume of visual data available in life.) They have other unrealistic
properties, e.g. highly simplified neurons, that are shared by VisNet
and HMAX.

Despite these simplifications, convolutional neural networks
(CNNs) are currently the only models that approach human
performance in rapid object categorization in natural scenes, a
function closely related to IT. Interestingly, convolutional networks
trained for object classification also represent object position and
orientation in their later layers, much like IT neurons (Hong
et al., 2016). Also like IT (and unlike HMAX or VisNet) their
internal activity is correlated within object categories (Cadieu
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al.,
2014). Furthermore, internal activity in their later layers predicts
much of the variance in activity of real IT neurons in response
to the same stimuli (Cadieu et al., 2014; Yamins et al., 2014),
and internal activity in their intermediate layers similarly predicts
neural activity in V4 (Yamins et al., 2014). Their internal activity is
also more invariant to position, rotation, and scale in later layers
than earlier layers, analogous to differences between V1 and IT
(Zeiler & Fergus, 2014).

In light of these similarities, we examined several additional
properties of CNNunit responses and compared themwith those of

our empirical model. We found that CNN responses are strikingly
similar to IT responses in many respects. Some CNN properties, in-
cluding the distribution of population sparseness across stimuli,
and the distribution of size bandwidths, were essentially indistin-
guishable from corresponding IT properties, and other properties
differed to various degrees. However, the substantial similarities
suggest that further increasing the similarity between CNNs and
IT may yield a model with responses that are hard to distinguish
from early IT responses, and we hope that our empirical model can
contribute to this convergence.

In summary, a variety of previous models have approximated
various properties of IT, and provided various insights, but all of
them have activity patterns that are currently easily distinguish-
able from those of IT. However, the gap between CNNs and the
earliest (largely feedforward) responses in IT is fairly small. A large
part of our motivation for developing the present model is to pro-
vide labels for training CNNs in a way that further reduces this gap
(discussed further in the Discussion).

2. Methods

The input to themodel is a list of visible objects and correspond-
ing parameters (e.g. retinal position, degree of occlusion, etc.) The
output is a list of spike rates for a population of IT neurons. We
sometimes additionallymodeled spike-rate changes over time, and
produced inhomogeneous Poisson spikes as output. The inputs can
be specifiedmanually, but we also developed an interface with the
robotics simulator V-REP (Rohmer, Singh, & Freese, 2013). This in-
terface calculates the relevant stimulus parameters from the sim-
ulation environment.

The complete simulation software (writtenmainly in Python) is
freely available at https://github.com/salkhan23/ITCortex.

Many of the statistical distributions in themodel are fits to data
for which distributions have not been proposed previously. We
used existing models where possible. We modified one published
model (the distribution of object selectivities), because this was
necessary in order to integrate this distributionwith the rest of our
model.

2.1. Model structure and data sources

Aneuron’s spike rate in response to a single stimulus objectwas
approximated as the product of an object-dependent ‘‘unscaled’’
spike rate robj, and various scale factors 0 ≤ s ≤ 1. Specifically,
a given neuron’s spike rate response to a single isolated stimulus
object was,

riso = robjsposssizesrotsocc, (1)

where spos, ssize, srot , and socc are taken from the neuron’s tuning
curves for retinal position, size, rotation, and occlusion, respec-
tively. We modeled both the forms and parameter distributions
of the tuning curves on the IT electrophysiology literature, as de-
scribed in detail in the following sections. We also modeled effects
of clutter and dynamics, as described in later sections.

Where possible, we used data from studies with large num-
bers of cells, and with information about the statistics of response
distributions. In the absence of evidence to the contrary, we as-
sumed that tuning for multiple stimulus properties was separable,
i.e. that we could approximate effects of multiple parameters as a
product of scaling factors. Examples of stimulus and position pref-
erence in Figure 5 of DiCarlo and Maunsell (2003) are generally
consistentwith this assumption. Similarly, OpDe Beeck and Vogels
(2000) reported that position sensitivity was invariant to changes
in stimulus shape and size. The only counter-example in ourmodel
is occlusion of diagnostic and non-diagnostic object parts (see Sec-
tion 2.3.4),whichwemodeled as a non-separable two-dimensional
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