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a b s t r a c t

Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state
and action spaces. However, the FERL method does only really work well with binary, or close to binary,
state input, where the number of active states is fewer than the number of non-active states. In the FERL
method, the value function is approximated by the negative free energy of a restricted Boltzmannmachine
(RBM). In our earlier study,we demonstrated that the performance and the robustness of the FERLmethod
can be improved by scaling the free energy by a constant that is related to the size of network. In this
study, we propose that RBM function approximation can be further improved by approximating the value
function by the negative expected energy (EERL), instead of the negative free energy, as well as being
able to handle continuous state input. We validate our proposed method by demonstrating that EERL:
(1) outperforms FERL, as well as standard neural network and linear function approximation, for three
versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art
results in stochastic SZ-Tetris in bothmodel-free andmodel-based learning settings; and (3) significantly
outperforms FERL and standard neural network function approximation for a robot navigation task with
raw and noisy RGB images as state input and a large number of actions.

© 2016 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sallans and Hinton (2004) proposed free-energy based rein-
forcement learning (hereafter, FERL) to handle high-dimensional
state and action spaces. In the FERL method, the value function is
approximated by the negative free energy, F , of a restricted Boltz-
mann machine (RBM) (Freund & Haussler, 1992; Hinton, 2002;
Smolensky, 1986): Q = −F = −⟨E⟩ + H for action-value based
learning, where ⟨E⟩ is the expected energy and H is the entropy of
the network. A considerable limitation of the FERL method is that
it only works well with binary, or close to binary, state input. Fur-
thermore, it is known that RBMs, traditionally, are not invariant to
different state representations and require that the number of ac-
tive states (values close to one) is much fewer than the number of
non-active states (values close to zero) to work well.

We have earlier demonstrated (Elfwing, Uchibe, & Doya, 2013)
that the robustness and the learning performance of FERL can be
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improved by scaling the free energy by a constant scaling factor,
Z (i.e., Q = −F/Z), that is related to the size of the network. The
purpose of this study is to show that expected energy based RBM
function approximation (hereafter, EERL: Q = −⟨E⟩) can achieve
competitive learning performance, not only in tasks with binary
state input and fewer active than non-active states, but also in
tasks with continuous state input and in tasks with more active
than non-active states. In the latter cases, we introduce a simple
normalization by removing themean of a state vector from each of
its elements to improve the learning performance even further.

To validate our proposed method, we first use three versions
of a gridworld task where the state input consists of (1) grayscale
images of handwritten digits from the MNIST data set (LeCun, Bot-
tou, Bengio, & Haffner, 1998); (2) inverted MNIST images; and
(3) RGB images of the different objects from the CIFAR-10 data
set (Krizhevsky, 2009). The purpose of the first version of the task
is to test the learning performance of our proposed method for a
task setting that is traditionally considered well-suited for RBMs:
i.e., close to binary state input with much fewer active than non-
active states. The purpose of the other two versions of the task is
the opposite, i.e., a task with more active than non-active states,
and a task with continuous state input. We then use the stochastic
SZ-Tetris benchmark (Szita & Szepesvári, 2010) to validate the per-
formance of EERL, in both model-free (Sarsa(λ)) and model-based
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Fig. 1. RBM architecture for action-value based reinforcement learning. In the case
of state-value based reinforcement learning, the action nodes, aj , action biases, bj ,
and the action weights, ujk , are not included.

(TD(λ)) learning settings, for a task that is, in general, considered
difficult for reinforcement learning algorithms. Finally, we use a
robot visual navigation task with raw and noisy RGB camera im-
ages as state input. The goal of the task is to navigate to one of two
goal areas. The correct goal can be inferred from the color of the
upper part of four landmarks, which is randomly changed in each
episode. In the robot navigation task, we investigate howwell EERL
can handle a large number of actions (pairs of velocities of the left
and right wheels) by testing settings with 9, 25, and 100 possible
actions.

Apart from the pioneering work by Sallans and Hinton (2004)
and our earlier studies (Elfwing, Otsuka, Uchibe, & Doya, 2010;
Elfwing et al., 2013), there have been few studies using RBMs as
function approximation in reinforcement learning. Heess, Silver,
and Teh (2012) proposed two energy-based actor-critic policy
gradient algorithms and demonstrated that theyweremore robust
andmore effective than standard FERL in several high dimensional
tasks. Otsuka, Yoshimoto, and Doya (2010) extended the FERL
method to handle partially observable Markov decision processes,
by incorporating a recurrent neural network that learns a memory
representation that is sufficient for predicting future observations
and rewards. In our recent work (Elfwing, Uchibe, & Doya, 2015),
we demonstrated in the classification domain that the expected
energy based RBM method significantly outperforms the free
energy based RBMmethod.

2. Method

2.1. TD(λ) and Sarsa(λ)

The reinforcement learning (Sutton&Barto, 1998)methods that
we propose in this study are based on the state-value function
learning algorithm TD(λ) (Sutton, 1988) and the action-value
function learning algorithm Sarsa(λ) (Rummery & Niranjan, 1994;
Sutton, 1996). TD(λ) learns an estimate of the state-value function,
Vπ , and Sarsa(λ) learns an estimate of the action-value function,
Q π , while the agent follows policy π . If the approximated value
functions, Vt ≈ Vπ and Qt ≈ Q π , are parameterized by the
parameter vector θt , then the gradient-descent update of the
parameters is computed by

θt+1 = θt + αδtet , (1)

where TD-error, δt , is

δt = rt + γ Vt(st+1) − Vt(st), (2)

for TD(λ) and

δt = rt + γQt(st+1, at+1) − Qt(st , at), (3)

for Sarsa(λ). The eligibility trace vector, et , is

et = γ λet−1 + ∇θtVt(st), e0 = 0, (4)

for TD(λ) and

et = γ λet−1 + ∇θtQt(st , at), e0 = 0 (5)

for Sarsa(λ). Here, st is the state at time t , at is the action selected
at time t , rt is the reward for taking action at in state st , α is the
learning rate, γ is the discount factor of future rewards, λ is the
trace-decay rate, and ∇θtVt and ∇θtQt are the vectors of partial
derivatives of the function approximators with respect to each
component of θt .

2.2. Free energy value function approximation

The use of a RBM as a function approximator for reinforcement
learningwas proposed by Sallans and Hinton (2004). A RBM is a bi-
directional neural network (see Fig. 1) which in the FERL method
consists of binary state nodes, s, binary hidden nodes, h, and, in the
case of action-value function learning, binary action nodes a. The
ith state node, si, is connected to hidden node hk by the weightwik,
and the jth action node, aj, is connected to hidden node hk by the
weight ujk. In addition, the state nodes, the hidden nodes and the
action nodes are all connected to a constant bias input with a value
of 1, with connection weights bi, bk, and bj, respectively. The action
vector a has an ‘‘one-out-of-J ’’ representation and functions as a
fixed input to the network for each action. Let aj denote the vector
for action j, where aj is equal to one and the rest of the action nodes
are equal to zero.

For state-value function learning, the energy, E, of the RBM for
state vector s is given by

E(s, h) = −

K
k=1

I
i=1

siwikhk −

I
i=1

bisi −
K

k=1

bkhk, (6)

and for action-value function learning, the energy, E, of the RBM
for state vector s and action vector aj is given by

E(s, aj, h) = −
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Here, I is the number of state nodes, K is the number of hidden
nodes, and J is the number of actions. The free energy, F , can be
computed as the sum of the expected energy, ⟨E⟩, and the negative
entropy, H , where the expectations are taken with respect to the
posterior distribution of the hidden values (P(h|s) and P(h|s, aj)).
The expectedhidden activation (i.e., the probability that the hidden
value is equal to one) of hidden node k is given by

⟨hk⟩ = P(hk = 1|s) = σ


I
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siwik + bk


= σ (xk) (8)

σ(x) =
1

1 + e−x
, (9)

for state-value function learning and

⟨hjk⟩ = P(hk = 1|s, aj) = σ
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, (10)
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