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h i g h l i g h t s

• The quadratic error functionals demonstrate many weaknesses for complex data.
• The back side of the non-quadratic error functionals is cost for optimization.
• New algorithms use Piece-wise Quadratic potentials of SubQuadratic growth (PQSQ).
• PQSQ-based algorithms are as fast as the fast heuristic methods but more accurate.
• PQSQ-based algorithms are computationally efficient for regularized sparse regression.
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a b s t r a c t

Most of machine learning approaches have stemmed from the application of minimizing the mean
squared distance principle, based on the computationally efficient quadratic optimizationmethods. How-
ever, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated
many weaknesses including high sensitivity to contaminating factors and dimensionality curse. There-
fore, a lot of recent applications in machine learning exploited properties of non-quadratic error func-
tionals based on L1 norm or even sub-linear potentials corresponding to quasinorms Lp (0 < p < 1). The
back side of these approaches is increase in computational cost for optimization. Till so far, no approaches
have been suggested to deal with arbitrary error functionals, in a flexible and computationally efficient
framework. In this paper, we develop a theory and basic universal data approximation algorithms (k-
means, principal components, principal manifolds and graphs, regularized and sparse regression), based
on piece-wise quadratic error potentials of subquadratic growth (PQSQpotentials).We develop a new and
universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guar-
anteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on
the notion of the cone of minorant functions, and represents a natural approximation formalism based
on the application of min-plus algebra. The approach can be applied in most of existing machine learning
methods, including methods of data approximation and regularized and sparse regression, leading to the
improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-
life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational
performance than the corresponding state-of-the-art methods, having similar or better approximation
accuracy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modern machine learning and artificial intelligence methods
are revolutionizing many fields of science today, such as medicine,
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biology, engineering, high-energy physics and sociology, where
large amounts of data have been collected due to the emergence of
new high-throughput computerized technologies. Historically and
methodologically speaking, many machine learning algorithms
have been based on minimizing the mean squared error potential,
which can be explained by tractable properties of normal
distribution and existence of computationally efficient methods
for quadratic optimization. However, most of the real-life datasets
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are characterized by strong noise, long-tailed distributions,
presence of contaminating factors, large dimensions. Using
quadratic potentials can be drastically compromised by all these
circumstances: therefore, a lot of practical and theoretical efforts
have been made in order to exploit the properties of non-
quadratic error potentials which can be more appropriate in
certain contexts. For example, methods of regularized and sparse
regression such as lasso and elastic net based on the properties
of L1 metrics (Tibshirani, 1996; Zou & Hastie, 2005) found
numerous applications in bioinformatics (Barillot, Calzone, Hupe,
Vert, & Zinovyev, 2012), and L1 norm-basedmethods of dimension
reduction are of great use in automated image analysis (Wright
et al., 2010). Not surprisingly, these approaches come with
drastically increased computational cost, for example, connected
with applying linear programming optimization techniques which
are substantially more expensive compared to mean squared
error-based methods.

In practical applications of machine learning, it would be very
attractive to be able to deal with arbitrary error potentials, includ-
ing those based on L1 or fractional quasinorms Lp (0 < p < 1), in a
computationally efficient and scalable way. There is a need in de-
velopingmethods allowing to tune the computational cost/accuracy
of optimization trade-off accordingly to various contexts.

In this paper, we suggest such a universal framework able
to deal with a large family of error potentials. We exploit the
fact that finding a minimum of a piece-wise quadratic function,
or, in other words, a function which is the minorant of a set of
quadratic functionals, can be almost as computationally efficient as
optimizing the standard quadratic potential. Therefore, if a given
arbitrary potential (such as L1-based or fractional quasinorm-
based) can be approximated by a piece-wise quadratic function,
this should lead to relatively efficient and simple optimization
algorithms. It appears that only potentials of quadratic or
subquadratic growth are possible in this approach: however, these
are the most useful ones in data analysis. We introduce a rich
family of piece-wise quadratic potentials of subquadratic growth
(PQSQ-potentials), suggest general approach for their optimization
and prove convergence of a simple iterative algorithm in the
most general case. We focus on the most used methods of
data dimension reduction and regularized regression: however,
potential applications of the approach can be much wider.

Data dimension reduction by constructing explicit low-
dimensional approximators of a finite set of vectors is one of the
most fundamental approach in data analysis. Starting from the
classical data approximators such as k-means (Lloyd, 1957) and lin-
ear principal components (PCA) (Pearson, 1901), multiple general-
izations have been suggested in the last decades (self-organizing
maps, principal curves, principal manifolds, principal graphs, prin-
cipal trees, etc.) (Gorban, Kegl, Wunsch, & Zinovyev, 2008; Gorban
& Zinovyev, 2009) in order to make the data approximators more
flexible and suitable for complex data structures.

We solve the problem of approximating a finite set of vectors
x⃗i ∈ Rm, i = 1, . . . ,N (dataset) by a simpler object L embedded
into the data space, such that for each point x⃗i an approximation
error err(x⃗i, L) function can be defined.We assume this function in
the form

err(x⃗i, L) = min
y∈L


k

u(xki − yk), (1)

where the upper k = 1, . . . ,m stands for the coordinate index, and
u(x) is a monotonously growing symmetrical function, which we
will be calling the error potential. By data approximation wemean
that the embedment of L in the data space minimizes the error

i

err(x⃗i, L)→ min .

Note that our definition of error function is coordinate-wise (it
is a sum of error potential over all coordinates).

The simplest form of the error potential is quadratic u(x) = x2,
which leads to the most known data approximators: mean point
(L is a point), principal points (L is a set of points) (Flury, 1990),
principal components (L is a line or a hyperplane) (Pearson, 1901).
In more advanced cases, L can possess some regular properties
leading to principal curves (L is a smooth line or spline) (Hastie,
1984), principalmanifolds (L is a smooth low-dimensional surface)
and principal graphs (eg., L is a pluri-harmonic graph embedment)
(Gorban, Sumner, & Zinovyev, 2007; Gorban & Zinovyev, 2009).

There exist multiple advantages of using quadratic potential
u(x), because it leads to the most computationally efficient
algorithms usually based on the splitting schema, a variant of
expectation–minimization approach (Gorban & Zinovyev, 2009).
For example, k-means algorithm solves the problem of finding the
set of principal points and the standard iterative Singular Value
Decomposition finds principal components. However, quadratic
potential is known to be sensitive to outliers in the dataset.
Also, purely quadratic potentials can suffer from the curse of
dimensionality, not being able to robustly discriminate ‘close’ and
‘distant’ point neighbors in a high-dimensional space (Aggarwal,
Hinneburg, & Keim, 2001).

There exist several widely used ideas for increasing approxi-
mator’s robustness in presence of strong noise in data such as:
(1) using medians instead of mean values, (2) substituting
quadratic norm by L1 norm (e.g. Ding, Zhou, He, & Zha, 2006 and
Hauberg, Feragen, & Black, 2014), (3) outliers exclusion or fixed
weighting or iterative reweighting during optimizing the data ap-
proximators (e.g. Allende, Rogel, Moreno, & Salas, 2004; Kohonen,
2001 and Xu & Yuille, 1995), and (4) regularizing the PCA vectors
by L1 norm (Candès, Li, Ma, & Wright, 2011; Jolliffe, Trendafilov,
& Uddin, 2003; Zou, Hastie, & Tibshirani, 2006). In some works,
it was suggested to utilize ‘trimming’ averages, e.g. in the context
of the k-means clustering or some generalizations of PCA (Cuesta-
Albertos, Gordaliza, & Matrán, 1997; Hauberg et al., 2014). In the
context of regression, iterative reweighting is exploited to mimic
the properties of L1 norm (Lu, Lin, & Yan, 2015). Several algorithms
for constructing PCA with L1 norm have been suggested (Brooks,
Dulá, & Boone, 2013; Ke & Kanade, 2005; Kwak, 2008) and system-
atically benchmarked (Brooks & Jot, 2012; Park & Klabjan, 2014).
Some authors go even beyond linear metrics and suggest that frac-
tional quasinorms Lp (0 < p < 1) can bemore appropriate in high-
dimensional data approximation (Aggarwal et al., 2001).

However, most of the suggested approaches exploiting prop-
erties of non-quadratic metrics either represent useful but still
arbitrary heuristics or are not sufficiently scalable. The standard
approach forminimizing L1-based norm consists in solving a linear
programming task. Despite existence of many efficient linear pro-
gramming optimizer implementations, by their nature these com-
putations are much slower than the iterative methods used in the
standard SVD algorithm or k-means.

In this paper, we provide implementations of the standard
data approximators (mean point, k-means, principal components)
using a PQSQ potential. As an other application of PQSQ-
based framework in machine learning, we develop PQSQ-based
regularized and sparse regression (imitating the properties of lasso
and elastic net).

2. Piecewisequadratic potential of subquadratic growth (PQSQ)

2.1. Definition of the PQSQ potential

Let us split all non-negative numbers x ∈ R≥0 into p + 1
non-intersecting intervals R0 = [0; r1), R1 = [r1; r2), . . . , Rk =

[rk; rk+1), . . . , Rp = [rp;∞), for a set of thresholds r1 < r2 <
· · · < rp. For convenience, let us denote r0 = 0, rp+1 =
∞. Piecewise quadratic potential is a continuous monotonously
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