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a b s t r a c t

Ordinal classification considers those classification problems where the labels of the variable to predict
followa given order. Naturally, labelled data is scarce or difficult to obtain in this type of problemsbecause,
in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly,
this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are
used in the model construction step (a scheme which is referred to as semi-supervised learning). More
specifically, the ordinal version of kernel discriminant learning is extended for this setting considering
the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space
induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised
in the context of ordinal classification, which is combined with our developed classification strategy to
optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-
supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the
good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the
advantage of computing distances in the feature space induced by the kernel function.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the advent of the big data era and the increased popu-
larity of machine learning, the number of scientific data-driven
applications is growing at an abrupt pace. Because of this in-
creased necessity, new related research avenues are explored
every year. In this sense, the recently coined termweak supervision
(Hernández-González, Inza, & Lozano, 2016) refers to those classifi-
cationmachine learning problemswhere the labelling information
is not as accessible as in the fully-supervised problem (where a la-
bel is associated to each pattern). The problem of semi-supervised
learning (i.e. learning from both labelled and unlabelled observa-
tions) is an example that has been the focus of many machine
learning researchers in the past years. In many real-world applica-
tions, obtaining labelled patterns could be a challenging task, how-
ever, unlabelled examples might be available with little or no cost.
The main idea behind semi-supervised learning is to take advan-
tage from unlabelled data when constructing the machine classi-
fier (and this is done using different assumptions on the unlabelled
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data: smoothness, clustering or manifold assumptions (Chapelle,
Schölkopf, & Zien, 2010; Wang, Shen, & Pan, 2009; Zhu, 2005)).
These learning approaches have been empirically and theoretically
studied in the literature and represent a suitable solution for such
circumstances, where the use of unlabelled data has been seen
to improve the performance of the model and stabilise it. Semi-
supervised learning has been mainly studied for binary classifica-
tion (Cai, He, & Han, 2007; Ortigosa-Hernández, Inza, & Lozano,
in press) and regression (Zhu, 2005), although recently themain fo-
cus has shifted to multi-class problems (Ortigosa-Hernández et al.,
in press; Soares, Chen, & Yao, 2012; Xu, Anagnostopoulos, & Wun-
sch, 2007) (and evenmulti-dimensional ones (Ortigosa-Hernández
et al., 2012)). This paper tackles the use of unlabelled data in the
context of ordinal classification (Gutiérrez, Pérez-Ortiz, Sánchez-
Monedero, Fernández-Navarro, & Hervás-Martínez, 2016), a learn-
ing paradigm which shares properties of both classification and
regression.

Ordinal regression (also known as ordinal classification) can be
defined as a relatively new learning paradigmwhose aim is to learn
a prediction rule for ordered categories. In contrast to multinomial
classification, there exists some ordering among the elements of Y
(the labelling space) and both standard classifiers and the zero–one
loss function do not capture and reflect this ordering appropriately
(Gutiérrez et al., 2016) (leading to worse models in terms of errors
in the ordinal scale). Concerning regression, Y is a non-metric
space.
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An explanatory example of order among categories is the Likert
scale (Likert, 0000), a well-knownmethodology used for question-
naires, where the categories correspond to the level of agreement
or disagreement for a series of statements. The scheme of a typical
five-point Likert scale could be: {Strongly disagree, Disagree, Neither
agree or disagree, Agree, Strongly Agree}, where the natural order
among categories can be appreciated. The major problem within
this kind of classification is that the misclassification errors should
not be treated equally, e.g., misclassifying a Strongly disagree pat-
tern as Strongly agree should be more penalised than a misclassifi-
cation with the Disagree category.

Several issues must be highlighted when developing new
ordinal classifiers in order to exploit the presence of this order
among categories. Firstly, this implicit data structure should be
learned by the classifier in order to minimise the different ordinal
classification errors (Gutiérrez et al., 2016), and, secondly, different
evaluation measures or metrics should be developed in this
context. The most popular approach for this type of problems is
threshold models (Chu & Ghahramani, 2005; McCullagh & Nelder,
1989; Shashua & Levin, 2003; Sun, Li, Wu, Zhang, & Li, 2010).
Thesemethods are based on the idea that, tomodel ordinal ranking
problems from a regression perspective, one can assume that
some underlying real-valued outcomes exist (also known as latent
variable), which are, in practice, unobservable.

Recently, a version of the well-known Kernel Discriminant
Analysis algorithm has been proposed for ordinal regression (Sun
et al., 2010), showing different advantageswith respect to other or-
dinal classification methods, i.e. a lower computational complex-
ity and the ability to capture the associated class distributions.
In essence, the formulation seeks for the projection that allows
the greater separation for the classes, but maintaining the classes
ordered in the projection (to avoid serious misclassification er-
rors). This algorithm, Kernel Discriminant Learning for Ordinal Re-
gression (KDLOR), has shown great potential and competitiveness
against other specially designed ordinal classifiers.

However, supervised ordinal regression approaches present
limitationswhen there are few data (Srijith, Shevade, & Sundarara-
jan, 2013; Wu, Sun, Liang, Tang, & Cai, 2015), which is a common
situation in this setting, where most ordinal classification prob-
lems are labelled by a user or expert (a process that could be ex-
pensive or time-consuming), and the number of classes is usually
relatively high (which hinders the class discrimination to a great
extent). Consider, for example, the case of a film recommenda-
tion system, where most users might not have interest in labelling
data, therefore unlabelled data exist and are easily available. In this
sense, the paradigmof semi-supervised learningwould use the un-
labelled data along with the labelled data to learn more precise
models. The development and analysis of semi-supervised ordinal
regression algorithms is, therefore, of great interest. However, the
number of works in the literature approaching this problem is very
low (Liu, Liu, Zhong, & Chan, 2011; Seah, Tsang, & Ong, 2012; Sri-
jith et al., 2013; Wu et al., 2015), where only two of them focus
on developing ordinal and semi-supervised classifiers (Srijith et al.,
2013; Wu et al., 2015) (the remainder focuses on related frame-
works, such as the transductive problem (Liu et al., 2011; Seah
et al., 2012) or clustering (Xiao, Liu, & Hao, 2016), which are out
of the scope of this paper).

We propose and test different approaches to deal with semi-
supervised ordinal classification problems. Firstly, we extend
the KDLOR algorithm to make use of unlabelled data via the
smoothness and manifold assumptions, (i.e. (1) points nearby are
likely to share the same label, and (2) the projection should not
only match the classification task but also respect the geometric
structure inferred from labelled and unlabelled data points).
Secondly, this paper proposes to compute the graph Laplacian
(used for the previous objective) in the feature space induced

by the kernel function, as opposed to computing it in the input
space. Since the final objective function is computed in the feature
space, this is a crucial consideration for the proposed technique.
Finally, we also propose a newmethod for semi-supervised kernel
learning based on kernel-target alignment to use in conjunction
with (ordinal) kernel methods. Kernel learning techniques are a
common choice to optimise the kernel parameters and adequately
fit the data using a kernel function (Cortes, Mohri, & Rostamizadeh,
2012; Cristianini, Kandola, Elisseeff, & Shawe-Taylor, 2002). We
test our proposals in a set of 30 ordinal classification datasets and
compare them to other strategies, the results showing the good
synergy of combining labelled and unlabelled data in the context
of ordinal regression.

The rest of the paper is organised as follows: Section 2 shows a
description of previous concepts; Section 3 presents the proposal
of this work; Section 4 describes the specific characteristics of the
datasets and the experimental study analyses the results obtained;
and finally, Section 5 outlines some conclusions and future work.

2. Previous notions

This section introduces some of the previous work in the area
of the paper.

Consider a training sample D = {xi, yi}Ni=1 ⊆ X × Y generated
i.i.d. from a (unknown) joint distribution P(x, y), where X ⊆ Rd

and Y = {C1, C2, . . . , CQ }. In the ordinal regression setup, the
labelling space is ordered due to the data ranking structure (C1 ≺

C2 ≺ · · · ≺ CQ , where ≺ denotes this order information). Let N
be the number of patterns in the training sample, Nq the number
of samples for the qth class and Xq the set of patterns belonging to
class Cq.

Furthermore, let H denote a high-dimensional Hilbert space.
Then, for any mapping of patterns Φ : X → H , the inner product
k(xi, xj) =


Φ(xi), Φ(xj)


H

of the mapped inputs is known as a
kernel function, giving rise to a positive semidefinite (PSD) matrix
K for a given input set {xi}Ni=1.

2.1. Discriminant learning

This learning paradigm is one of the pioneers and leading tech-
niques in the machine learning area, being currently used for su-
pervised dimensionality reduction and classification. The main
goal of this technique can be described as finding the optimal linear
projection for the data (from which different classes can be well
separated). To do so, the algorithm analyses two objectives: the
maximisation of the between-class distance and the minimisation
of the within-class distance, by using variance–covariance matri-
ces (Sb and Sw , respectively) and the so-called Rayleigh coefficient
(J(w) =

wTSbw
wTSww , wherew is the projection for the data). To achieve

these objectives, the Q − 1 eigenvectors associated to the highest
eigenvalues of S−1

w · Sb are computed.
The between-class andwithin-class scattermatrices (Sb and Sw ,

respectively) are defined as follows (when considering the kernel
version):

Sw =
1
N

Q
q=1


xi∈Xq

(Φ(xi) − MΦ
q )(Φ(xi) − MΦ

q )T, (1)

Sb =
1
N

Q
q=1

Nq(MΦ
q − MΦ)(MΦ

q − MΦ)T, (2)

where MΦ
q =

1
Nq


xi∈Xq

Φ(xi), and MΦ
=

1
N

N
i=1 Φ(xi). The

objectives presented can be achieved by the maximisation of the
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