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a b s t r a c t

This paper studies the mean-square exponential input-to-state stability of delayed Cohen–Grossberg
neural networks with Markovian switching. By using the vector Lyapunov function and property of
M-matrix, two generalized Halanay inequalities are established. By means of the generalized Halanay
inequalities, sufficient conditions are also obtained, which can ensure the exponential input-to-state
stability of delayed Cohen–Grossberg neural networks with Markovian switching. Two numerical
examples are given to illustrate the efficiency of the derived results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In 1983, Cohen and Grossberg presented a neural network
(Cohen & Grossberg, 1983), which is now called Cohen–Grossberg
neural network (CGNN). As we know, Cohen–Grossberg neural
networks include the famous Hopfield neural networks, cellular
neural networks as its special cases. This model has been paid
much considerable attention due to itswide applications in various
areas such as pattern classification, associative memory, parallel
computation, optimization, system identification and control,
moving object speed detection and so on. Accordingly, a great
number of results have been published concerning CGNNs (Cao &
Liang, 2004; Song & Cao, 2006; Yuan, Cao, & Li, 2006; Zhou, Teng, &
Xu, 2015; Zhu, Cao, & Rakkiyappan, 2015; Zhu & Li, 2012) and the
references cited therein.

Time delays are unavoidable in hardware implementation
owing to the finite switching speed of amplifiers. It may often
lead to the oscillation, divergence, and even instability during the
application of neural networks. In the past few years, delayed
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neural networks have been extensively studied by researchers and
there have appeared a large number of results in the literature,
for instance (Cao & Liang, 2004; Long & Xu, 2013; Xu, Luo, Zhong,
& Zhu, 2014; Zhou et al., 2015; Zhu et al., 2015) and references
therein. In addition, since Markovian jump linear systems were
firstly introduced in early 1960s, various systems driven by
continuous time Markovian chains have been widely employed to
practical systems where they may experience abrupt changes in
system structure and parameters. In such a case, neural networks
can be represented by a switchingmodel which can be regarded as
a set of parametric configurations switching from one to another
according to a given Markovian chain (see Huang, Ho, & Qu, 2007;
Mao & Yuan, 2006; Shen & Wang, 2009; Zhu & Cao, 2012; Zhu &
Cao, 2010; Zhu& Cao, 2011). Taking the time delays andMarkovian
switching into account, it is actually valuable to investigate the
stability of delayed Cohen–Grossberg neural networks (DCGNNs)
with Markovian switching.

It is well-known that the stability of neural network is not only
the most basic and important problem but also the foundation
of neural network’s applications. Recently, there have been a lot
of literature on the stability analysis of neural networks reported
in the literature (see Liu, Shen, & Jiang, 2011; Liu, 2016; Shen
& Wang, 2008; Wang, Shen, & Ding, 2015; Xiao, Zeng, & Wu,
2014; Zhang & Shen, 2015; Zhu, Zhong, & Shen, 2014). On the
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other hand, the input-to-state stability (ISS) is one of the useful
properties for nonlinear systems (see Zhou et al., 2015; Zhu et al.,
2015). The ISS concept means that no matter what the initial
state is, if the inputs are uniformly small, then the state of the
neural networks must eventually be small. It offers an effective
way to handle the stabilization of neural network applications in
the presence of various uncertainties. Recently, some results on
the ISS properties are obtained for neural networks. For example,
Sanchez and Perez (1999) investigated the ISS properties and gave
some matrix norm conditions on ISS of recurrent neural networks
(RNNs) firstly. Ahn utilized Lyapunov function method to discuss
robust stability problem for a class of RNNs, and also some LMI
sufficient conditions have been proposed to guarantee the ISS
in Ahn (2011). It is Zhu and Cao who firstly investigated the
exponential ISS for stochastic neural networks in Zhu and Cao
(2014) and Zhu et al. (2015). Recently, we have also noticed that
some scholars begin to discuss the exponential stability of neural
networks by means of the vector Lyapunov function methods, see
e.g. Long and Xu (2013), Shen and Wang (2009) and Zhou et al.
(2015). For example, Shen and Wang (2009) have considered the
exponential stability of DRNNs with Markovian switching by a
generalized vector Halanay inequality. By using the Razumikhin
technique, two sufficient criteria on mean square exponential ISS
of stochastic delayed exponential ISS of are derived in Zhou et al.
(2015). It is well-known that the existing criteria cannot handle
the exponential ISS of DCGNNs with Markovian switching, since
the simultaneous presence of external input item and switching
mechanism. To the best of our knowledge, the exponential ISS of
DCGNNswithMarkovian switching has scarcely been investigated.
As such, this issue constitutes the first motivation of this paper.

Moreover, for most of the existing stability criteria for neural
networks, described by scalar Lyapunov function or vector
Lyapunov function, the time-delayed item and the non-delay
item are separated in corresponding L -operator differential
inequality. It is well-known that the cross items will inevitably
arise when using the Lyapunov function to study the stability of
delayed systems. While most scholars choose to use the elemental
inequality to deal with the cross items. As a result, these proposed
methods seem to be more conservative. Naturally, an interesting
question is generated whether the cross items could arise in the
vector L -operator differential inequality? Solving this problem is
the second motivation of this paper.

Summarizing the above statements, the focus of this paper is to
discuss the exponential ISS for DCGNNswithMarkovian switching,
and obtain the criteria described by vector L -operator differential
inequality with cross items. The main contributions of this paper
lie in two aspects: (1) By using the vector Lyapunov functions
and stochastic analysis technique, two generalized stochastic
vector Halanay inequalities are established; (2) Based on the
novel Halanay inequalities, sufficient algebraic criteria with less
conservative are obtained to ensure the ISS in mean square sense.

The remainder of this paper is organized as follows. Section 2
introduces the model of DCGNNs with Markovian switching
and gives some necessary notations. Section 3 presents the
main results. Two numerical examples are given to show the
effectiveness of the main results in Section 4. Finally, concluding
remarks are made in Section 5.

2. Models and preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω, F , {Ft}t≥0, P ) be a complete probability space with a filtra-
tion {Ft}t≥0 satisfying the usual conditions (i.e., it is right con-
tinuous and F contains all P-null sets). Let τ > 0 and C =

C([−τ , 0], Rn) denote the family of continuous functions ϕ from
[−τ , 0] to Rn with the norm ∥ϕ∥τ = sup−τ≤θ≤0 |ϕ(θ)|, where

| · | is the Euclidean norm in Rn. Denote by L2
Ft

the family of
all C([−τ , 0]; Rn)-valued, Ft-adapted stochastic variables φ =

{φ(s), −τ ≤ s ≤ 0} such that
 0
−τ

E|φ(s)|2ds < ∞, where E
stands for the correspondent expectation operator with respect
to the given probability measurable P . The set of all essentially
bounded functions u : R+ → Rn, endowed with essential supre-
mum norm ∥u∥∞ = sup{|u(t)|, t ≥ 0}, is denoted by Ln

∞
. A func-

tion ϕ : R+ → R+ is said to be class of K if it is continuous
and strictly increasing and satisfies ϕ(0) = 0; it is of class K∞

if in addition ϕ(s) → ∞ as s → ∞. Let G is a vector or ma-
trix. By G ≥ 0 we mean that each element of G is non-negative.
By G ≫ 0 we mean that all elements of G are positive. And if
G = (gij)n×n ∈ Rn×n, we denote |G| = (|gij|)n×n, Ḡ = (ḡij)n×n with
ḡij = gij(i ≠ j), ḡii = g+

ii = max{gii, 0}, i = 1, . . . , n. Moreover,
we also adopt here the traditional notation by letting

Zn×n
= {A = {aij}n×n : aij ≤ 0, i ≠ j}.

Let {r(t)(t ≥ 0)} be a right-continuous Markovian chain on
the probability space taking values in a finite state space M =

{1, 2, . . . ,N} with generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =


γij∆ + o(∆) i ≠ j
1 + γii∆ + o(∆) i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i ≠ j
while γii = −Σi≠jγij.

In this paper, we consider a DCGNN with Markovian switching

dxk(t) = hk(xk(t))

−dk(r(t), xk(t)) +

n
l=1

akl(r(t))fl(xl(t))

+

n
l=1

bkl(r(t))fl(xl(t − τl(t))) + uk(t)

dt,

k = 1, 2, . . . , n, (1)

for t ≥ 0 with initial value ξ ∈ C, r0 ∈ M, where x(t) =

(x1(t), x2(t), . . . , xn(t))T is the state of the neuron at time
t,H(x(t)) = diag(h1(x1(t)), h2(x2(t)), . . . , hn(xn(t))) represents
the amplification function of the neuron at time t , D(i, x(t)) =

diag(d1(i, x1(t)), d2(i, x2(t)), . . . , dn(i, xn(t)))T is the appropri-
ately behaved function dependent on t and on the state processes
x(t), while A(i) = (akl(i))n×n and B(i) = (bkl(i))n×n describe the
connection weight matrices associated without delays and with
delays, respectively. τl(·) l = 1, . . . , n denote the time-varying de-
lay, that satisfies 0 ≤ τl(t) ≤ τ , where τ is the maximal delay.
U(t) = (u1(t), u2(t), . . . , un(t))T is the external input function at
time t , f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))T ) and f (x(t −

τ(t))) = (f1(x1(t−τ1(t))), f2(x2(t−τ2(t))), . . . , fn(xn(t−τn(t))))T
are vector-valued activation functions.

In order to prove our main results, we make the following
assumptions on the amplification functions, behaved functions,
and activation functions.

Assumption 1. There exist positive constants hk, hk such that

0 < hk ≤ hk(x) ≤ hk, x ∈ R, k = 1, 2, . . . , n.

Assumption 2. For i ∈ M, there exist positive constants δk(i) such
that

xdk(i, x) ≥ δk(i)x2, x ∈ R, k = 1, 2, . . . , n.

Assumption 3. There exist positive constantsMk such that

0 ≤
fk(x) − fk(y)

x − y
≤ Mk, x, y ∈ R, k = 1, 2, . . . , n.
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