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a b s t r a c t 

The key issue that prevents application of Reinforcement Learning (RL) methods in complex control sce- 

narios is lack of convergence to meaningful decision policies (i.e. policies that differ significatively from 

random decisions), due to the huge state-action spaces to be explored. Providing the agent with initial 

domain knowledge alleviates this problem. This is known as Conditioned RL (CRL). In high-dimensional 

continuous state-action space and reward domains, CRL is often the only feasible approach to reach 

meaningful decision policies. In these kind of systems, RL is carried out by Actor-Critic approaches, and 

the state-action value functionals are modeled by Value Function Approximations (VFA). CRL methods 

make use of an existing reference controller, i.e. the teacher controller, which provides the initial domain 

knowledge to the agent under training. The teacher-controller can be used in two ways to build the VFA 

of the state-action value and state transition functions which determine the action selection policy: (1) 

providing the desired output for a supervised learning process, or (2) directly using it to build them. We 

have carried out experiments to compare CRL methods, and unconditioned Actor-Critic agents in three 

different control benchmark scenarios. Results show that both agent conditioning approaches result in 

significant performance improvements. Undertight computational time constraints, CRL approaches were 

able to learn efficient policies, while the unconditioned agents were not able to find any acceptable policy 

in the benchmark control scenarios. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Reinforcement Learning (RL) methods are gaining popularity as 

an alternative approach to traditional control techniques [1–10] . 

Among the most prominent and promising approaches are model- 

free online learning methods, which learn in a step-wise fashion 

by interacting with the environment to be controlled. They do not 

require an accurate model of the environment and, most impor- 

tantly, they do not require the designer to have a great experi- 

ence on the specific control task. The learning agent receives a re- 

ward as feedback and its goal is to maximize these rewards. Early 

RL algorithms assumed discrete sets of states and actions, which 

made them ill-suited for complex realistic control scenarios. In re- 

cent years, though, the focus of researchers has shifted to control 

tasks defined in multi-dimensional continuous state-action spaces. 

Learning continuous space domain functions is dealt with by Value 

Function Approximation (VFA) [11–13] , which provides a mean of 

obtaining approximations of a continuous valued function from a 

discrete set of samples. Actor-Critic [14,15] designs are the best 
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suited to work with continuous states and actions because they 

keep separate structures to represent the value function and the 

action selection policy being learned. Actor-Critic learn using policy 

iteration : first, the Critic estimates the value of the current policy 

using a policy-evaluation method, and then the Actor updates the 

policy using some policy-improvement method. 

Current policy-evaluation methods focus on Least-Squares Tem- 

poral Difference methods, such as LSTD ( λ) [16–18] , whereas the 

state-of-the-art in policy-improvement methods is based on the 

natural gradient [19–21] . These methods are very efficient data- 

wise, but computationally very expensive and, not well-suited 

for high-dimensional state-action spaces [22] , nevertheless they 

can be substituted succesfully using computationally inexpensive 

methods such as TD ( λ) or Continuous Action-Critic Learning Au- 

tomaton (CACLA). 

RL methods face a very difficult issue when applied to high- 

dimensional continuous state-action spaces: how to find an accept- 

able policy from scratch. Absence of prior information means that 

the initial agent’s policy will likely perform very poorly. Since RL 

methods aim to maximize the rewards received by exploring the 

state-action space, the likelihood of reaching an acceptable policy, 

i.e. a policy guaranteeing rewards above a threshold, is very low in 
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high-dimensional continuous domains. Thus, the agent needs to in- 

corporate domain knowledge before it starts the state-action space 

exploration, this process is known as Conditioned RL (CRL). In this 

paper, we have compared two different CRL methods that pro- 

vide an initial policy. Computational experiments were conducted 

on three different control tasks defined on continuous domains: 

airplane pitch control, underwater vehicle control, and Variable- 

Speed Wind-Turbine (VSWT) control. We have used CACLA with 

two different critics: the time difference TD ( λ) and the recently 

proposed True-Online TD ( λ) ( TOTD ( λ)). We have also tested VFAs 

with different feature dimensionality to assess its effect on func- 

tion approximation accuracy, which remains an open question in 

recent literature [12,22] . 

The main contributions o reported in this paper are the follow- 

ing ones: 

• Papers in the literature have very simplistic CRL methods work- 

ing on toy examples, we compare two conditioning methods, 

assessing their impact on the policies learned by Actor-Critic 

learning architectures on realistic control tasks, 

• Most papers in the literature assume an ad-hoc definition of the 

VFA parameters, we assess the impact on the Actor-Critic agent 

performance of the VFA resolution (i.e. number of features), 

• We provide the first evaluation of the performance of the novel 

True Online Temporal-Difference policy evaluation algorithm in 

an Actor-Critic architecture compared to the classical Temporal- 

Difference ( λ) policy evaluation method. 

The contents of the paper are the following: First, in 

Section 2 we review the basic concepts and techniques involved in 

approaching RL of continuous control tasks [23] . In Section 3 we 

describe the learning and conditioning methods used in the exper- 

iments, and in Section 4 we review the main details of the bench- 

mark control scenarios used as benchmarks. The results are dis- 

cussed in Section 5 and, finally, Section 6 delivers the conclusions. 

2. Background 

Reinforcement Learning (RL) models the interaction between 

the agent and the environment as a Markov Decision Process 

(MDP) [14] defined by a tuple 〈 X, U, P, R 〉 , where X is the state 

space, U is the action space, P is the stochastic state transition 

function P : X × U × X → [0, 1], and R is the reward function R : X ×
U × X → R . Both X and U can be discrete sets of states/actions 

or continuous state/action spaces, or a hybrid composition of dis- 

crete and continuous variables. Most of the early RL literature is 

devoted to discrete state-action spaces, however this representa- 

tion becomes useless when tackling with complex feedback control 

tasks. Therefore, we assume in this paper that the input state space 

is X ⊆ R 

n (being n the number of state variables), and that the ac- 

tion space is U ⊆ R 

m (being m the number of control variables) 

equivalent to the output control variables [24] . In control applica- 

tions, the goal of the learning agent is to learn an optimal pol- 

icy π ∗( x ): X → U that maximizes the expected reward return from 

state x , known as the value function of state x : 

V 

π ( x ) = E π
{ ∞ ∑ 

k =1 

r t+ k γ
k −1 | x t = x 

}
, (1) 

where r t is the reward received by the agent in time-step t , 

weighted by the discount parameter γ ∈ (0, 1]. This value function 

must be estimated in order to assess the wellness of a policy π . 

Online model-free learning methods learn from iterative interac- 

tion with the environment: At each time-step t , the state x t is ob- 

served, the agent selects an action u t receiving a reward r t assess- 

ing the value of the new state x t+1 reached by the environment- 

agent system. At the end of each time-step, the agent updates its 

optimal policy estimation with the information provided by the 

last transition 〈 x t , u t , r, x t+1 〉 . 
Actor-Critic methods. The learning scheme in Actor-Critic architec- 

tures is a policy estimation iteration that updates the policy using 

a two-step procedure: first, the policy value function V 

π estimate 

is updated ( policy evaluation ), secondly, the policy π is improved 

using the value estimate ( policy improvement ). The value function 

V 

π and the policy π are represented in separate memory struc- 

tures: the Critic learns V 

π , whereas the Actor learns π . After up- 

dating the value function, the critic provides feedback to the actor. 

This feedback usually consists on the Temporal-Difference (TD) er- 

ror δt = r t + γ ˆ V ( x t+1 ) − ˆ V ( x t ) , where ˆ V ( . ) denotes the current es- 

timation of the value function, so that the term 

(
γ ˆ V ( x t+1 ) − ˆ V ( x t ) 

)
is our current discounted estimation of the incremental value of 

the current state. 

Value Function Approximation. We use Value Function Approxima- 

tion (VFA) for the representation of a value function or policy with 

continuous inputs/outputs. VFAs use a set of feature activation 

functions φ : X → R 

F mapping points in the input state space X 

into feature vectors [ φ1 ( x ) , φ2 ( x ) . . . φF ( x ) ] , wher e F is the number 

of features used to represent the input state space. The most inter- 

esting VFAs are linear models (i.e. Radial Basis Function networks) 

because they offer some convergence properties over non-linear 

VFA models (i.e. neural networks) [12] . A linear VFA, approximation 

to a given function f ( x ) can be expressed as ˆ f ( x ) = θ T φ( x ) , where 

θ is the linear combination parameter vector θ = [ θ1 , θ2 , . . . , θF ] . 

These parameters θ i are estimated by interpolation of the fea- 

ture activation functions outputs over the complete continuous in- 

put space. The VFA may be used to model of any state-dependent 

function, such as the value function V 

π or the Actor’s policy π . 

Multivariate state functions, i.e., an actor that outputs several con- 

trol variables, may be represented as a set of univariate policies: 

π( x ) = { π1 ( x ) , π2 ( x ) , . . . , πm 

( x ) } which are modeled by VFA inde- 

pendently. 

By setting an activation threshold, the number of active features 

(with non-null activation values) for a given state x is commonly 

reduced, obtaining a sparse representation on a small subset of the 

features. This means that only a small number of features must be 

updated at each time-step. We have used a network of Gaussian 

Radial Basis Functions (RBF) φi ( x ), each of which is associated to a 

center point c i in the input space X : 

φi ( x ) = e −
‖ x −c i ‖ 2 

2 σ2 , (2) 

where σ 2 controls the width of the Gaussian bell shaped function. 

We have distributed the center points uniformly over the input 

space forming a grid of F = 

∏ n 
i =1 F i center points, where F i is the 

number of feature centers used to approximate the i -th state vari- 

able. We illustrate this approximation with an example of a 2-input 

space function approximated as a grid of Gaussian RBFs with 3 fea- 

tures per state variable: Fig. 1 a represents the 9 normalized acti- 

vation functions ( F = F 1 ∗ F 2 = 3 ∗ 3 = 9 ), and Fig. 1 b represents the 

output surface of the VFA for some interpolation parameter vector 

θ . 

Exploration. Model-free online learning methods must be able to 

explore different policies in order to improve the current one, so 

that the policy decision needs to introduce some perturbation to 

the actual greedy decision to choose the action with expected 

maximum value, i.e. the greedy decision. Therefore, learning pro- 

cesses need to balance exploitation and exploration in the deci- 

sion making processes. Exploitation is carried out taking the action 

with the highest expected return, whereas exploration is carried 

out taking some other randomly chosen action. One way to con- 

trol de balance between exploration and exploitation is by adding 
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